要使函數(shù)f(x)=sinx-
3
cosx
變?yōu)槠婧瘮?shù),只需將f(x)的圖象( 。
分析:化簡f(x)的解析式為2sin(x-
π
3
),把f(x)的圖象向左平移
π
3
個單位,可得奇函數(shù)y=sinx的圖象,由此得出結(jié)論
解答:解:函數(shù)f(x)=sinx-
3
cosx
=2(
1
2
sinx-
3
2
cosx)=2sin(x-
π
3
),
把f(x)的圖象向左平移
π
3
個單位,可得函數(shù)y=2sin(x-
π
3
+
π
3
)=sinx的圖象,而函數(shù)y=2sinx是奇函數(shù),
故選D.
點評:本題主要考查函數(shù)y=Asin(ωx+∅)的圖象變換,正弦函數(shù)的奇偶性,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù),如果滿足:存在常數(shù)M>0,對任意x∈D都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù).
(1)試判斷函數(shù)f(x)=2sin(x+
π
6
)+3
在實數(shù)集R上,函數(shù)g(x)=x3+
3
x
[
1
3
,3]
上是不是有界函數(shù)?若是,請給出證明;若不是,請說出理由.
(2)若已知某質(zhì)點的運動距離S與時間t的關(guān)系為S(t)=
1
4
t4+3lnt-at
,要使在t∈[
1
3
,3]
上每一時刻的瞬時速度的絕對值都不大于13,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如右圖所示,定義在D上的函數(shù)f(x),如果滿足:對?x∈D,常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖中的常數(shù)A可以是正數(shù),也可以是負(fù)數(shù)或零)
(1)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說明理由;
(2)已知某質(zhì)點的運動方程為S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一時刻該質(zhì)點的瞬時速度是以A=
1
2
為下界的函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)

(Ⅰ)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說明理由;
(Ⅲ)已知某質(zhì)點的運動方程為S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一時刻該質(zhì)點的瞬時速度是以A=
1
2
為下界的函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省安福中學(xué)2011屆高三上學(xué)期第一次月考理科數(shù)學(xué)試題 題型:044

如下圖所示,定義在D上的函數(shù)f(x),如果滿足:對x∈D,常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖中的常數(shù)A可以是正數(shù),也可以是負(fù)數(shù)或零)

(1)試判斷函數(shù)f(x)=x3在(0,+∞)上是否有下界?并說明理由;

(2)已知某質(zhì)點的運動方程為S(t)=at-2,要使在t∈[0,+∞)上的每一時刻該質(zhì)點的瞬時速度是以A=為下界的函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義在D上的函數(shù),如果滿足:存在常數(shù)M>0,對任意x∈D都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù).
(1)試判斷函數(shù)f(x)=2sin(x+
π
6
)+3
在實數(shù)集R上,函數(shù)g(x)=x3+
3
x
[
1
3
,3]
上是不是有界函數(shù)?若是,請給出證明;若不是,請說出理由.
(2)若已知某質(zhì)點的運動距離S與時間t的關(guān)系為S(t)=
1
4
t4+3lnt-at
,要使在t∈[
1
3
,3]
上每一時刻的瞬時速度的絕對值都不大于13,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案