已知函數(shù)=,=,若曲線和曲線都過點P(0,2),且在點P處有相同的切線.
(Ⅰ)求,,,的值;
(Ⅱ)若≥-2時,≤,求的取值范圍.
(Ⅰ); (Ⅱ) 的取值范圍為[1,].
【解析】
試題分析:(Ⅰ)先由過點得出,再求在點導(dǎo)數(shù),由導(dǎo)數(shù)幾何意義知,從而解得;
(Ⅱ)設(shè)==()=, 由題設(shè)可得≥0,即, 令=0得,=,=-2, 對分3中情況討論得出結(jié)果.
試題解析:(Ⅰ)由已知得,
而=,=,∴=4,=2,=2,=2;
(Ⅱ)由(Ⅰ)知,,, 設(shè)函數(shù)
==(),==, 由題設(shè)可得≥0,即, 令=0得,=,=-2,
(1)若,則-2<≤0,∴當(dāng)時,<0,當(dāng)時,>0,即在單調(diào)遞減,在單調(diào)遞增,故在=取最小值,而==≥0, ∴當(dāng)≥-2時,≥0,即≤恒成立,
(2)若,則=, ∴當(dāng)≥-2時,≥0,∴在(-2,+∞)單調(diào)遞增,而=0, ∴當(dāng)≥-2時,≥0,即≤恒成立,
(3)若,則==<0, ∴當(dāng)≥-2時,≤不可能恒成立,
綜上所述,的取值范圍為[1,].
考點:1.導(dǎo)數(shù)的幾何意義;2.利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間;3.利用導(dǎo)數(shù)求函數(shù)最值.
科目:高中數(shù)學(xué) 來源: 題型:
p | x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市八縣(市)一中高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三(上)期末質(zhì)量檢查一級達標(biāo)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省莆田十中高三適應(yīng)性考試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省寧德市古田縣高三適應(yīng)性測試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com