【題目】為迎接“五一”節(jié)的到來,某單位舉行“慶五一,展風(fēng)采”的活動(dòng).現(xiàn)有6人參加其中的一個(gè)節(jié)目,該節(jié)目由兩個(gè)環(huán)節(jié)可供參加者選擇,為增加趣味性,該單位用電腦制作了一個(gè)選擇方案:按下電腦鍵盤“Enter”鍵則會(huì)出現(xiàn)模擬拋兩枚質(zhì)地均勻骰子的畫面,若干秒后在屏幕上出現(xiàn)兩個(gè)點(diǎn)數(shù)和,并在屏幕的下方計(jì)算出的值.現(xiàn)規(guī)定:每個(gè)人去按“Enter”鍵,當(dāng)顯示出來的小于時(shí)則參加環(huán)節(jié),否則參加環(huán)節(jié).
(1)求這6人中恰有2人參加該節(jié)目環(huán)節(jié)的概率;
(2)用分別表示這6個(gè)人中去參加該節(jié)目兩個(gè)環(huán)節(jié)的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
【答案】(1)(2)見解析
【解析】
(1)利用古典概型概率公式得出選擇參加環(huán)節(jié)的概率,選擇參加環(huán)節(jié)的概率,再利用獨(dú)立重復(fù)實(shí)驗(yàn)概率公式,即可得出答案;
(2)得出的可能取值以及對(duì)應(yīng)概率,即可得出分布列以及期望.
(1)依題意得,由屏幕出現(xiàn)的點(diǎn)數(shù)和形成的有序數(shù)對(duì),一共有種等可能的基本事件
符合的有,共24種
所以選擇參加環(huán)節(jié)的概率為,選擇參加環(huán)節(jié)的概率為
所以這6人中恰有2人參加該節(jié)目環(huán)節(jié)的概率
(2)依題意得的可能取值為
所以的分布列為
0 | 2 | 4 | 6 | |
數(shù)學(xué)期望
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),已知對(duì)任意,都有,且成立.令,其中為常數(shù).
(1)當(dāng)時(shí),求函數(shù)的所有零點(diǎn);
(2)當(dāng)時(shí),求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ.
(1)若曲線C1方程中的參數(shù)是α,且C1與C2有且只有一個(gè)公共點(diǎn),求C1的普通方程;
(2)已知點(diǎn)A(0,1),若曲線C1方程中的參數(shù)是t,0<α<π,且C1與C2相交于P,Q兩個(gè)不同點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,若存在閉區(qū)間,使得函數(shù)滿足:①在
上是單調(diào)函數(shù);②在 上的值域是,則稱區(qū)間是函數(shù) 的“和諧區(qū)間”,
下列結(jié)論錯(cuò)誤的是( )
A.函數(shù) 存在 “和諧區(qū)間”
B.函數(shù) 存在 “和諧區(qū)間”
C.函數(shù) 不存在 “和諧區(qū)間”
D.函數(shù) 存在 “和諧區(qū)間”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時(shí)全修好;單位對(duì)學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如表:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總計(jì) | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總計(jì) | 80 | 320 | 400 |
求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
請(qǐng)說明是否有以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神
有關(guān)?參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)甲、乙、丙三所單位進(jìn)行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )
A.36B.72C.108D.144
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),證明:;
(Ⅲ)求證:對(duì)任意正整數(shù),都有 (其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com