(本小題滿分12分)
已知三點(diǎn),曲線上任一點(diǎn)滿足=
(1) 求曲線的方程;
(2) 設(shè)是(1)中所求曲線上的動點(diǎn),定點(diǎn),線段的垂直平分線與軸交于點(diǎn),求實(shí)數(shù)的最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對角線A C、BD過原點(diǎn)O,若,
(i) 求的最值.
(ii) 求證:四邊形ABCD的面積為定值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓(a>b>0)的離心率e=,連接橢圓的四個頂點(diǎn)得到的菱形的面積為4.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為(-,0).若,求直線l的傾斜角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓C:(.
(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點(diǎn)的直線與橢圓C交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率k的取值范圍;
(3)如圖,過原點(diǎn)任意作兩條互相垂直的直線與橢圓()相交于四點(diǎn),設(shè)原點(diǎn)到四邊形一邊的距離為,試求時滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓E:的焦點(diǎn)坐標(biāo)為(),點(diǎn)M(,)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)Q(1,0),過Q點(diǎn)引直線與橢圓E交于兩點(diǎn),求線段中點(diǎn)的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的離心率,過點(diǎn)和的直線與原點(diǎn)的距離為。⑴求橢圓的方程;⑵已知定點(diǎn),若直線與橢圓交于兩點(diǎn),問:是否存在的值,使以為直徑的圓過點(diǎn)?請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在平面直角坐標(biāo)系中,橢圓的焦距為2,且過點(diǎn).
求橢圓的方程;
若點(diǎn),分別是橢圓的左、右頂點(diǎn),直線經(jīng)過點(diǎn)且垂直于軸,點(diǎn)是橢圓上異于,的任意一點(diǎn),直線交于點(diǎn)
(。┰O(shè)直線的斜率為直線的斜率為,求證:為定值;
(ⅱ)設(shè)過點(diǎn)垂直于的直線為.求證:直線過定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題13分)設(shè)橢圓的左右焦點(diǎn)分別為,,上頂點(diǎn)為,過點(diǎn)與垂直的直線交軸負(fù)半軸于點(diǎn),且是的中點(diǎn).
(1)求橢圓的離心率;
(2)若過點(diǎn)的圓恰好與直線相切,求橢圓的方程;
(3)在(2)的條件下過右焦點(diǎn)作斜率為的直線與橢圓相交于兩點(diǎn),在軸上是否存在點(diǎn)使得以為鄰邊的平行四邊形為菱形,如果存在,求出的取值范圍,如果不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com