如圖,已知四棱錐的底面ABCD為正方形,平面ABCD,E、F分別是BC,PC的中點,,

(1)求證:平面

(2)求二面角的大。

【解析】第一問利用線面垂直的判定定理和建立空間直角坐標系得到法向量來表示二面角的。

第二問中,以A為原點,如圖所示建立直角坐標系

,,

設平面FAE法向量為,則

,,

 

【答案】

(1)見解析    (2)

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)    如圖:已知四棱錐的底面是平行四邊形,,垂足在邊上,△是等腰直角三角形,,四面體的體積為

(1)求面與底面所成的銳二面角的大小;

(2)求點到面的距離;

(3)若點在直線上,且,求的值.

                                           

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四棱錐的底面是正方形,⊥底面,且,點、分別在側棱、上,且 

(Ⅰ)求證:⊥平面;

(Ⅱ)若,求平面與平面的所成銳二面角的大小 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆云南省昆明一中高三上學期第一次月考試題文科數(shù)學 題型:解答題

(本小題滿分12分)
如圖,已知四棱錐的底面是正方形,,且,點分別在側棱、上,且。

(Ⅰ)求證:
(Ⅱ)若,求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆重慶市高二上學期期中考試理科數(shù)學試卷(解析版) 題型:解答題

如圖,已知四棱錐的底面是正方形,⊥底面,且,點、分別為側棱的中點 

(1)求證:∥平面;

(2)求證:⊥平面.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年西藏拉薩中學高三第七次月考考試理科數(shù)學 題型:解答題

 

(12分)

如圖,已知四棱錐的底面為矩形,平面分別為的中點.

(Ⅰ)求證:

(Ⅱ)求二面角的大小值.

 

 

查看答案和解析>>

同步練習冊答案