【題目】如圖,在三棱錐P-ABC中,D,E,F分別為棱PCAC,AB的中點,PA⊥平面ABC,∠ABC90°,ABPA6BC8,則(

A.三棱錐D-BEF的體積為6

B.直線PB與直線DF垂直

C.平面DEF截三棱錐P-ABC所得的截面面積為12

D.P與點A到平面BDE的距離相等

【答案】ACD

【解析】

A.根據(jù)PA⊥平面ABC,∠ABC90°,ABPA6BC8,先求得V三棱錐P-ABC,再根據(jù)DE,F分別為棱PCAC,AB的中點,得到V三棱錐D-BEF ;B. 假設(shè)直線PB與直線DF垂直,利用線面垂直的判定定理得到平面DEF, 平面DEF矛盾;C.根據(jù) DE,F分別為棱PCAC,AB的中點,則截面與PB相交,交點為中點,論證其形狀再求解;D. 論證平面DEF即可.

A.因為PA⊥平面ABC,∠ABC90°ABPA6,BC8,

所以V三棱錐P-ABC

又因為D,EF分別為棱PC,ACAB的中點,

所以,

所以V三棱錐D-BEF ,故正確;

B. 若直線PB與直線DF垂直,因為PA⊥平面ABC,所以,

,

所以平面PAB,所以 ,

,所以 平面PAB,

所以 ,所以 平面DEF,

易知 平面DEF,矛盾,故錯誤;

C.如圖所示:

PB的中點G,連接GD,GF,

,

所以,

所以平面DEF截三棱錐P-ABC所得的截面為矩形GFED

其面積為,故正確;

D. 因為, 平面DEF,平面DEF,

所以平面DEF,

所以點P與點A到平面BDE的距離相等,故正確.

故選:ACD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量表得如下頻數(shù)分布表:

質(zhì)量指標(biāo)值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

II)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司成本為元,所得的利潤元的幾組數(shù)據(jù)入下.

第一組

第二組

第三組

第四組

第五組

1

4

5

2

3

2

1

3

4

0

根據(jù)上表數(shù)據(jù)求得回歸直線方程為:

1)若這個公司所規(guī)劃的利潤為200萬元,估算一下它的成本可能是多少?(保留1位小數(shù))

2)在每一組數(shù)據(jù)中,,相差,記為事件,相差,記為事件;,相差,記為事件.隨機抽兩組進行分析,則抽到有事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為,左、右焦點分別為

(1)求橢圓的方程;

(2)若直線與橢圓交于A,B兩點,與以為直徑的圓交于C,D兩點,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為,離心率,且短軸長為4.

求橢圓的方程;

已知,,若直線l與圓相切,且交橢圓ECD兩點,記的面積為,記的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1642年,帕斯卡發(fā)明了一種可以進行十進制加減法的機械計算機年,萊布尼茨改進了帕斯卡的計算機,但萊布尼茲認(rèn)為十進制的運算在計算機上實現(xiàn)起來過于復(fù)雜,隨即提出了“二進制”數(shù)的概念之后,人們對進位制的效率問題進行了深入的研究研究方法如下:對于正整數(shù),,我們準(zhǔn)備張不同的卡片,其中寫有數(shù)字0,1,…,的卡片各有如果用這些卡片表示進制數(shù),通過不同的卡片組合,這些卡片可以表示個不同的整數(shù)例如,時,我們可以表示出個不同的整數(shù)假設(shè)卡片的總數(shù)為一個定值,那么進制的效率最高則意味著張卡片所表示的不同整數(shù)的個數(shù)最大根據(jù)上述研究方法,幾進制的效率最高?  

A. 二進制 B. 三進制 C. 十進制 D. 十六進制

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱中,,,

求證:面;

,在線段上是否存在一點,使二面角的平面角的余弦值為?若存在,確定點的位置;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人事部門對參加某次專業(yè)技術(shù)考試的100人的成績進行了統(tǒng)計,繪制的頻率分布直方圖如圖所示.規(guī)定80分以上者晉級成功,否則晉級失敗(滿分為100分).

(1)求圖中的值;

(2)估計該次考試的平均分 (同一組中的數(shù)據(jù)用該組的區(qū)間中點值代表);

(3)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級成功”與性別有關(guān).

晉級成功

晉級失敗

合計

16

50

合計

參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】物線的焦點為,已知點為拋物線上的兩個動點,且滿足,過弦的中點作該拋物線準(zhǔn)線的垂線,垂足為,則的最小值為  

A. B. 1 C. D. 2

查看答案和解析>>

同步練習(xí)冊答案