【題目】已知數(shù)列的前n項(xiàng)和為,且n、成等差數(shù)列,.

1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)若數(shù)列中去掉數(shù)列的項(xiàng)后余下的項(xiàng)按原順序組成數(shù)列,求的值.

【答案】1)證明見(jiàn)解析,;(211202.

【解析】

1)由n,,成等差數(shù)列,可得,,兩式相減,由等比數(shù)列的定義可得是等比數(shù)列,可求數(shù)列的通項(xiàng)公式;

2)由(1)中的可求出,根據(jù)求出數(shù)列,中的公共項(xiàng),分組求和,結(jié)合等比數(shù)列和等差數(shù)列的求和公式,可得答案.

1)證明:因?yàn)?/span>n,,成等差數(shù)列,所以,①

所以.

①-②,得,所以.

又當(dāng)時(shí),,所以,所以

故數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,

所以,即.

2)根據(jù)(1)求解知,,所以,

所以數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列.

又因?yàn)?/span>,,,,

,,,

所以

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的圖象經(jīng)過(guò)點(diǎn).

(1)求拋物線(xiàn)的方程和焦點(diǎn)坐標(biāo);

(2)直線(xiàn)交拋物線(xiàn),不同兩點(diǎn),且,位于軸兩側(cè),過(guò)點(diǎn),分別作拋物線(xiàn)的兩條切線(xiàn)交于點(diǎn),直線(xiàn)軸的交點(diǎn)分別記作,.記的面積為面積為,面積為,試問(wèn)是否為定值,若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄AM過(guò)點(diǎn)且與直線(xiàn)相切.

(1)求動(dòng)圓圓心M的軌跡C的方程;

(2)斜率為的直線(xiàn)l經(jīng)過(guò)點(diǎn)且與曲線(xiàn)C交于A,B兩點(diǎn),線(xiàn)段AB的中垂線(xiàn)交x軸于點(diǎn)N,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,,,M是橢圓E上的一個(gè)動(dòng)點(diǎn),且的面積的最大值為.

1)求橢圓E的標(biāo)準(zhǔn)方程,

2)若,,四邊形ABCD內(nèi)接于橢圓E,記直線(xiàn)AD,BC的斜率分別為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,,,.

1)求證:;

2)若,求平面和平面所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐PABC中,ACBC,AB2BC,D為線(xiàn)段AB上一點(diǎn),且AD3DBPD⊥平面ABC,PA與平面ABC所成的角為45°

1)求證:平面PAB⊥平面PCD

2)求二面角PACD的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最小正周期為4,其圖象關(guān)于直線(xiàn)對(duì)稱(chēng),給出下面四個(gè)結(jié)論:

①函數(shù)在區(qū)間上先增后減;②將函數(shù)的圖象向右平移個(gè)單位后得到的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);③點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心;④函數(shù)上的最大值為1.其中正確的是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有兩個(gè)零點(diǎn),證明:;

(2)設(shè)函數(shù)的兩個(gè)零點(diǎn)為.證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案