數(shù)列{an}的前n項和為Sn,若an=,則S10等于(  )
A.B.C.D.
D
an==(-),
所以S10=a1+a2+…+a10
=(1-+-+…+-)
=(1+--)=,故選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前n項的和為,且.
(1)求數(shù)列,的通項公式;
(2)記,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知命題:若數(shù)列{an}為等差數(shù)列,且amaanb(mn,mn∈N*),則amn;現(xiàn)已知等比數(shù)列{bn}(bn>0,n∈N*),bmabnb(mn,m、n∈N*),若類比上述結論,則可得到bmn=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在等差數(shù)列{an}中,首項a1=120,公差d=-4,若Snan(n≥2),則n的最小值為(  )
A.60 B.62 C.70 D.72

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

知{an}是首項為-2的等比數(shù)列,Sn是其前n項和,且S3,S2,S4成等差數(shù)列,
(1)求數(shù)列{an}的通項公式.
(2)若bn=log2|an|,求數(shù)列{}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

數(shù)列{an}的前n項和Sn=2n-1,則+++…+等于(  )
A.(2n-1)2B.(2n-1)2
C.4n-1D.(4n-1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設數(shù)列{an}的前n項和為Sn,已知a1=1,Sn+1=2Sn+n+1(n∈N*),則數(shù)列{an}的通項公式an=   .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設等差數(shù)列{an}的前n項和為Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范圍.
(2)求{an}前n項和Sn最大時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)f(x)=px2+qx(p≠0),其導函數(shù)為f'(x)=6x-2,數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項公式.
(2)若cn=(an+2),2b1+22b2+23b3+…+2nbn=cn,求數(shù)列{bn}的通項公式.

查看答案和解析>>

同步練習冊答案