【題目】2016915中秋節(jié)(農(nóng)歷八月十五)到來之際,某月餅銷售企業(yè)進行了一項網(wǎng)上調(diào)查,得到如下數(shù)據(jù):

合計

喜歡吃月餅人數(shù)(單位:萬人)

50

40

90

不喜歡吃月餅人數(shù)(單位:萬人)

30

20

50

合計

80

60

140

為了進一步了解中秋節(jié)期間月餅的消費量,對參與調(diào)查的喜歡吃月餅的網(wǎng)友中秋節(jié)期間消費月餅的數(shù)量進行了抽樣調(diào)查,得到如下數(shù)據(jù):

已知該月餅廠所在銷售范圍內(nèi)有30萬人,并且該廠每年的銷售份額約占市場總量的35%.

1)試根據(jù)所給數(shù)據(jù)分析,能否有以上的把握認為,喜歡吃月餅與性別有關(guān)?

參考公式與臨界值表:,

其中:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

2)若忽略不喜歡月餅者的消費量,請根據(jù)上述數(shù)據(jù)估計:該月餅廠恰好生產(chǎn)多少噸月餅恰好能滿足市場需求?

【答案】1)沒有(2182.25

【解析】

2)計算卡方系數(shù)再與2.706進行比較大小,即可得到答案;

(2)先求出的值,再計算喜歡吃月餅的人數(shù)所占比例為,即可得答案.

1)由所給條件可得

,

所以,沒有90%以上的把握認為,喜歡吃月餅與性別有關(guān).

2)根據(jù)所給頻率分布直方圖可知,第三組數(shù)據(jù)和第四組數(shù)據(jù)的頻率相同,都是:

,

則人均消費月餅的數(shù)量為:

(克)

喜歡吃月餅的人數(shù)所占比例為:

根據(jù)市場占有份額,恰好滿足月餅銷售,該廠生產(chǎn)的月餅數(shù)量為:

()=128.25().

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線處的切線經(jīng)過點.

1)求實數(shù)的值;

2)證明:單調(diào)遞增,在單調(diào)遞減;

3)設(shè),求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C1ab0)的離心率為,短軸長為2,直線l與圓Ox2+y2相切,且與橢圓C相交于M、N兩點.

1)求橢圓C的方程;

2)證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著新政策的實施,海淘免稅時代于201648日正式結(jié)束,新政策實施后,海外購物的費用可能會增加.為了解新制度對海淘的影響,某記者調(diào)查了身邊喜歡海淘的10位朋友,其態(tài)度共有兩類:第一類是會降低海淘數(shù)量,共有4人,第二類是不會降低海淘數(shù)量,共有6.若該記者計劃從這10人中隨機選取5人按順序進行采訪,則第一類的人數(shù)多于第二類,且采訪中第二類不連續(xù)進行的不同采訪順序有(

A.3840B.5040C.6020D.7200

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在討論勾股定理的過程中,《九章算術(shù)》提供了許多整勾股數(shù),如,等等.其中最大的數(shù)稱為“弦數(shù)”,后人在此基礎(chǔ)上進一步研究,得到如下規(guī)律:若勾股數(shù)組中的某一個數(shù)是確定的奇數(shù)(大于1),把它平方后拆成相鄰的兩個整數(shù),那么奇數(shù)與這兩個整數(shù)構(gòu)成一組勾股數(shù),若勾股數(shù)組中的某一個數(shù)是大于2的偶數(shù),把它除以2后再平方,然后把這個平方數(shù)分別減1,加1所得到的兩個整數(shù)和這個偶數(shù)構(gòu)成一組勾股數(shù).由此得到的這種勾股數(shù)稱之為“由生成的一組勾股數(shù)”.若“由17生成的這組勾股數(shù)”的“弦數(shù)”為,“由20生成的這組勾股數(shù)”的“弦數(shù)”為,則____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的方程為.

1)求曲線的直角坐標方程;

2)設(shè)曲線與直線交于點,點的坐標為(3,1),求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求的單調(diào)區(qū)間;

2)若上的最大值是,求的值;

3)記,當時,若對任意式,總有成立,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在梯形中,,,過,分別作的垂線,垂足分別為,已知,,將梯形沿,同側(cè)折起,使得平面平面,平面平面,得到圖2.

(1)證明:平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是某省從121日至224日的新冠肺炎每日新增確診病例變化曲線圖.

若該省從121日至224日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項和為,則下列說法中正確的是(

A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列

C.數(shù)列的最大項是D.數(shù)列的最大項是

查看答案和解析>>

同步練習冊答案