【題目】如圖,以橢圓()的右焦點(diǎn)為圓心,為半徑作圓(其中為已知橢圓的半焦距),過(guò)橢圓上一點(diǎn)作此圓的切線(xiàn),切點(diǎn)為.
(1)若,為橢圓的右頂點(diǎn),求切線(xiàn)長(zhǎng);
(2)設(shè)圓與軸的右交點(diǎn)為,過(guò)點(diǎn)作斜率為()的直線(xiàn)與橢圓相交于、兩點(diǎn),若恒成立,且.求:
(。的取值范圍;
(ⅱ)直線(xiàn)被圓所截得弦長(zhǎng)的最大值.
【答案】(1);(2)(。,(ⅱ).
【解析】
(1)利用求得,進(jìn)而得到,利用勾股定理可求得切線(xiàn)長(zhǎng);
(2)(ⅰ)由恒成立可知;根據(jù)切線(xiàn)長(zhǎng)的求解可知當(dāng)最小時(shí),最小,從而構(gòu)造出不等式求得的范圍;
(ⅱ)設(shè)直線(xiàn)方程,與橢圓方程聯(lián)立后寫(xiě)出韋達(dá)定理的形式,同時(shí)利用韋達(dá)定理表示出,根據(jù)垂直關(guān)系可得,從而構(gòu)造等式求得,得到直線(xiàn)方程;利用垂徑定理可將所求弦長(zhǎng)化為,采用換元法,可將等式右側(cè)變?yōu)殛P(guān)于的函數(shù)的形式,結(jié)合二次函數(shù)的性質(zhì)可求得函數(shù)的最大值,即為所求弦長(zhǎng)的最大值.
(1)由得:
當(dāng)為橢圓右頂點(diǎn)時(shí),
又圓的半徑為
(2)(ⅰ)當(dāng)取得最小值時(shí),取得最小值
,則,即
又,,解得:
即的取值范圍為
(ⅱ)由題意得:,則直線(xiàn)
聯(lián)立得:
設(shè),,則,
,整理可得:
又 直線(xiàn),即
圓心距離,又半徑
直線(xiàn)被圓截得的弦長(zhǎng)為
令,則,令
當(dāng),即時(shí),
即直線(xiàn)被圓截得的弦長(zhǎng)的最大值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,射線(xiàn)和均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線(xiàn)和上.經(jīng)測(cè)量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農(nóng)經(jīng)營(yíng),打算在扇形區(qū)域外修建一條公路,分別與射線(xiàn)、交于、兩點(diǎn),并要求與扇形弧相切于點(diǎn).設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計(jì).
(1)試將公路的長(zhǎng)度表示為的函數(shù),并寫(xiě)出的取值范圍;
(2)試確定的值,使得公路的長(zhǎng)度最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地?cái)M建造一座體育館,其設(shè)計(jì)方案?jìng)?cè)面的外輪廓線(xiàn)如圖所示:曲線(xiàn)是以點(diǎn)為圓心的圓的一部分,其中,是圓的切線(xiàn),且,曲線(xiàn)是拋物線(xiàn)的一部分,,且恰好等于圓的半徑.
(1)若米,米,求與的值;
(2)若體育館側(cè)面的最大寬度不超過(guò)75米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,B是AC的中點(diǎn),,P是平行四邊形BCDE內(nèi)(含邊界)的一點(diǎn),且.有以下結(jié)論:
①當(dāng)x=0時(shí),y∈[2,3];
②當(dāng)P是線(xiàn)段CE的中點(diǎn)時(shí),;
③若x+y為定值1,則在平面直角坐標(biāo)系中,點(diǎn)P的軌跡是一條線(xiàn)段;
④x﹣y的最大值為﹣1;
其中你認(rèn)為正確的所有結(jié)論的序號(hào)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在與正實(shí)數(shù),使得成立,則稱(chēng)函數(shù)在處存在距離為的對(duì)稱(chēng)點(diǎn),把具有這一性質(zhì)的函數(shù)稱(chēng)之為“型函數(shù)”.
(1)設(shè),試問(wèn)是否是“型函數(shù)”?若是,求出實(shí)數(shù)的值;若不是,請(qǐng)說(shuō)明理由;
(2)設(shè)對(duì)于任意都是“型函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)各項(xiàng)均為整數(shù)的無(wú)窮數(shù)列滿(mǎn)足:,且對(duì)所有,均成立.
(1)寫(xiě)出的所有可能值(不需要寫(xiě)計(jì)算過(guò)程);
(2)若是公差為1的等差數(shù)列,求的通項(xiàng)公式;
(3)證明:存在滿(mǎn)足條件的數(shù)列,使得在該數(shù)列中,有無(wú)窮多項(xiàng)為2019.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)平面,四邊形是正方形,且,點(diǎn),,分別是線(xiàn)段,,的中點(diǎn).
(1)求異面直線(xiàn)與所成角的大小(結(jié)果用反三角表示);
(2)在線(xiàn)段上是否存在一點(diǎn),使,若存在,求出的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若
(1)當(dāng)時(shí),設(shè)所對(duì)應(yīng)的自變量取值區(qū)間的長(zhǎng)度為(閉區(qū)間的長(zhǎng)度為),試求的最大值;
(2)是否存在這樣的使得當(dāng)時(shí),?若存在,求出的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知分別為的三內(nèi)角A,B,C的對(duì)邊,其面積,在等差數(shù)列中,,公差.?dāng)?shù)列的前n項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com