【題目】新型冠狀病毒屬于屬的冠狀病毒,有包膜,顆粒常為多形性,其中包含著結(jié)構(gòu)為數(shù)學(xué)模型的,,人體肺部結(jié)構(gòu)中包含,的結(jié)構(gòu),新型冠狀病毒肺炎是由它們復(fù)合而成的,表現(xiàn)為.則下列結(jié)論正確的是(

A.,則為周期函數(shù)

B.對(duì)于,的最小值為

C.在區(qū)間上是增函數(shù),則

D.,,滿足,則

【答案】ABD

【解析】

計(jì)算得到正確,設(shè),上單調(diào)遞增,在上單調(diào)遞減,計(jì)算得到正確,化簡(jiǎn)即恒成立,計(jì)算故,錯(cuò)誤,三角恒等變換知正確,得到答案.

,則,

,

代換整理得到:,

,則為周期函數(shù);

,則,,則為周期函數(shù),正確;

設(shè),故,設(shè)

,故單調(diào)遞減,

,,故存在使.

上單調(diào)遞增,在上單調(diào)遞減,

,當(dāng)時(shí),,故,正確;

在區(qū)間上增函數(shù),則

恒成立,

設(shè),則,

上單調(diào)遞增,故上單調(diào)遞減,,

,錯(cuò)誤;

D. ,,滿足,則

,其中.

,即函數(shù)關(guān)于對(duì)稱,故,

,

,故正確;

故選:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列說(shuō)法:①“”是“”的充分不必要條件;②命題“,”的否定是“,”;③小趙、小錢、小孫、小李到4個(gè)景點(diǎn)旅游,每人只去一個(gè)景點(diǎn),設(shè)事件為“4個(gè)人去的景點(diǎn)不相同”,事件為“小趙獨(dú)自去一個(gè)景點(diǎn)”,則;④設(shè),其正態(tài)分布密度曲線如圖所示,那么向正方形中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分的點(diǎn)的個(gè)數(shù)的估計(jì)值是6587.(注:若,則,)其中正確說(shuō)法的個(gè)數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是橢圓的左右焦點(diǎn),橢圓與軸正半軸交于點(diǎn),直線的斜率為,且到直線的距離為

1)求橢圓的方程;

2為橢圓上任意一點(diǎn),過(guò)分別作直線,,且相交于軸上方一點(diǎn),當(dāng)時(shí),求,兩點(diǎn)間距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=exx+12,令f1x)=f'(x),fn+1x)=fn'(x),若fnx)=exanx2+bnx+cn),記數(shù)列{}的前n項(xiàng)和為Sn,則下列選項(xiàng)中與S2019的值最接近的是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,菱形ABCD與正三角形BCE的邊長(zhǎng)均為2,它們所在的平面互相垂直,DF⊥平面ABCDDF.

1)求證:EF//平面ABCD

2)若∠ABC=∠BCE,求二面角ABFE的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,所在平面互相垂直,且,,,分別為,的中點(diǎn).

(1)求證:;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,為橢圓上一動(dòng)點(diǎn)(異于左右頂點(diǎn)),面積的最大值為

(1)求橢圓的方程;

(2)若直線與橢圓相交于點(diǎn)兩點(diǎn),問(wèn)軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線E,)的左、右焦點(diǎn)分別為,,已知點(diǎn)為拋物線C的焦點(diǎn),且到雙曲線E的一條漸近線的距離為,又點(diǎn)P為雙曲線E上一點(diǎn),滿足.

1)雙曲線的標(biāo)準(zhǔn)方程為______;

2的內(nèi)切圓半徑與外接圓半徑之比為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,,,為棱上的動(dòng)點(diǎn).

1)若的中點(diǎn),求證:平面;

2)若平面平面ABC,且是否存在點(diǎn),使二面角的平面角的余弦值為?若存在,求出的值,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案