【題目】設(shè)點(diǎn)P(x,y)是曲線a|x|+b|y|=1(a≥0,b≥0)上任意一點(diǎn),其坐標(biāo)(x,y)均滿足 ,則 a+b取值范圍為( )
A.(0,2]
B.[1,2]
C.[1,+∞)
D.[2,+∞)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an},滿足d>0,且a1+a2+a3=9,a1a3=5
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn= ,Sn為數(shù)列{bn}的前n項(xiàng)和,證明:Sn<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線 :,(1)求證:不論實(shí)數(shù) 取何值,直線 總經(jīng)過一定點(diǎn).為使直線不經(jīng)過第二象限(2)求實(shí)數(shù) 的取值范圍(3)若直線 與兩坐標(biāo)軸的正半軸圍成的三角形面積最小,求 的方程.
(1)求證:不論實(shí)數(shù) 取何值,直線 總經(jīng)過一定點(diǎn).
(2)為使直線不經(jīng)過第二象限,求實(shí)數(shù) 的取值范圍.
(3)若直線 與兩坐標(biāo)軸的正半軸圍成的三角形面積最小,求 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx+2 cos2x﹣ .
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知a=1,b= ,f(A﹣ )= ,求角C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=4x和點(diǎn)M(6,0),O為坐標(biāo)原點(diǎn),直線l過點(diǎn)M,且與拋物線交于A,B兩點(diǎn).
(1)求 ;
(2)若△OAB的面積等于12 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=1,Sn+1=4an+2,則a2013的值為( )
A.3019×22012
B.3019×22013
C.3018×22012
D.無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與拋物線: 相交于, 兩點(diǎn), 是線段的中點(diǎn),過作軸的垂線交于點(diǎn).
(Ⅰ)證明:拋物線在點(diǎn)處的切線與平行;
(Ⅱ)是否存在實(shí)數(shù)使?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com