設(shè)函數(shù)f(x)=-sin(2x-).
(I)求函數(shù)f(x)的最大值和最小值;
(Ⅱ)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,c=3,f()=,若,求△ABC的面積.
(I)函數(shù)取得最大值1,函數(shù)取得最小值0;(Ⅱ).
【解析】
試題分析:(I)求函數(shù)的最大值與最小值,需將函數(shù)轉(zhuǎn)化為一個(gè)角的一個(gè)三角函數(shù),因此需對降次整理,此題降次后,以及sin(2x-)利用誘導(dǎo)公式,轉(zhuǎn)化為,從而求解;(Ⅱ)求△ABC的面積,由三角形面積公式,須知道,及的值,由來確定的值,由,可利用正弦定理轉(zhuǎn)化為的關(guān)系,再由余弦定理,求出的值,從而求解.
試題解析:(I) ∴當(dāng)時(shí),函數(shù)取得最大值1;當(dāng)時(shí),函數(shù)取得最小值0;
(Ⅱ) ,又 ,, ,,,,,
考點(diǎn):三角恒等變化,正弦定理、余弦定理在解三角形中的應(yīng)用,考查學(xué)生數(shù)形結(jié)合的能力以及轉(zhuǎn)化與化歸能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:廣東省汕頭市金山中學(xué)2010屆高三期中考試數(shù)學(xué)理科試題 題型:013
設(shè)函數(shù)f(x)=(a<0)的定義域?yàn)镈,若所有點(diǎn)(s,f(t))(s,t∈D)構(gòu)成一個(gè)正方形區(qū)域,則a的值為
-2
-4
-8
不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河北省冀州中學(xué)2011屆高三一?荚嚁(shù)學(xué)理科試題 題型:044
設(shè)函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與直線y=4相切于M(1,4).
(Ⅰ)求f(x)=x3+ax2+bx在區(qū)間(0,4]上的最大值與最小值;
(Ⅱ)設(shè)存在兩個(gè)不等正數(shù)s,t(s<t),當(dāng)x∈[s,t]時(shí),函數(shù)f(x)=x3+ax2+bx的值域是[ks,kt],求正數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省山一中高三第二次統(tǒng)測理科數(shù)學(xué) 題型:解答題
(本小題滿分14分)
設(shè)函數(shù)f(x)=tx2+2t2x+t-1(t∈R,t>0).
(1)求f(x)的最小值s(t);
(2)若s(t)<-2t+m對t∈(0,2)時(shí)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩根x1、x2滿足,
0<x1<x2<.
(Ⅰ)當(dāng)x∈(0,x1)時(shí),證明:x<f(x)<x1;w.w.w.k.s.5.u.c.o.m
(Ⅱ)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明:x0<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)=tx2+2t2x+t-1(t∈R,t>0).
(1)求f(x)的最小值s(t);
(2)若s(t)<-2t+m對于t∈(0,2)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com