【題目】如圖,正方形內(nèi)的圖形來自中國古代的太極圖.正方形內(nèi)切圓中的黑色部分和白色部分位于正方形的中心成中心對稱,在正方形內(nèi)隨機取一點,則此點取自黑色部分的概率是( )
A. B. C. D.
【答案】D
【解析】根據(jù)圖形的對稱性知,黑色部分為圓面積的一半,設(shè)圓的半徑為1,則正方形的邊長為2,則黑色部分的面積為,所求概率為,故選D.
點睛: (1)當(dāng)試驗的結(jié)果構(gòu)成的區(qū)域為長度、面積、體積等時,應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時,關(guān)鍵是試驗的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域.(3)幾何概型有兩個特點:一是無限性,二是等可能性.基本事件可以抽象為點,盡管這些點是無限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用“比例解法”求解幾何概型的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求函數(shù)取得最大值時的自變量的集合并說出最大值;
(2)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 且S2=11,S5=50,則過點P(n,an)和Q(n+2,an+2)(n∈N*)的直線的一個方向向量的坐標(biāo)可以是( )
A.(﹣1,﹣3)
B.(1,﹣3)
C.(1,1)
D.(1,﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對于任意實數(shù)對(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,則稱集合M具有∟性,給出下列四個集合:
①M={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};
③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};
其中具有∟性的集合的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為紀(jì)念重慶黑山谷晉升國家5A級景區(qū)五周年,特發(fā)行黑山谷紀(jì)念郵票,從2017年11月1日起開始上市.通過市場調(diào)查,得到該紀(jì)念郵票在一周內(nèi)每1張的市場價y(單位:元)與上市時間x(單位:天)的數(shù)據(jù)如下:
上市時間x天 | 1 | 2 | 6 |
市場價y元 | 5 | 2 | 10 |
(Ⅰ)分析上表數(shù)據(jù),說明黑山谷紀(jì)念郵票的市場價y(單位:元)與上市時間x(單位:天)的變化關(guān)系,并判斷y與x滿足下列哪種函數(shù)關(guān)系,①一次函數(shù);②二次函數(shù);③對數(shù)函數(shù),并求出函數(shù)的解析式;
(Ⅱ)利用你選取的函數(shù),求黑山谷紀(jì)念郵票市場價最低時的上市天數(shù)及最低的價格.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,直線y= x為曲線y=f(x)的切線(e為自然對數(shù)的底數(shù)).
(1)求實數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣cx2為增函數(shù),求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(,且,)是定義在區(qū)間上的奇函數(shù),
(1)求的值和實數(shù)的值;
(2)判斷函數(shù)在區(qū)間上的單調(diào)性,并說明理由;
(3)若且成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的右焦點為F,上頂點為A,短軸長為2,O為原點,直線AF與橢圓C的另一個交點為B,且△AOF的面積是△BOF的面積的3倍.
(1)求橢圓C的方程;
(2)如圖,直線l:y=kx+m與橢圓C相交于P,Q兩點,若在橢圓C上存在點R,使OPRQ為平行四邊形,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校隨機抽取200名學(xué)生,獲得了他們一周課外閱讀時間(單位:h)的數(shù)據(jù),整理得到數(shù)據(jù)的頻數(shù)分布表和頻率分布直方圖(如圖).
編 號 | 分 組 | 頻 數(shù) |
1 | [0,2) | 12 |
2 | [2,4) | 16 |
3 | [4,6) | 34 |
4 | [6,8) | 44 |
續(xù) 表
編 號 | 分 組 | 頻 數(shù) |
5 | [8,10) | 50 |
6 | [10,12) | 24 |
7 | [12,14) | 12 |
8 | [14,16) | 4 |
9 | [16,18] | 4 |
合計 | 200 |
(1)從該校隨機選取一名學(xué)生,試估計這名學(xué)生該周課外閱讀時間少于12 h的概率;
(2)求頻率分布直方圖中的a,b的值;
(3)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,試估計樣本中的200名學(xué)生該周課外閱讀時間的平均數(shù)在第幾組.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com