已知等差數(shù)列的前四項和為10,且成等比數(shù)列
(1)求通項公式
(2)設,求數(shù)列的前項和。

 ;⑵ 。

解析試題分析:(1)利用等差數(shù)列的通項公式分別表示出前四項和與a2,a3,a7等比數(shù)列關系組成方程組求得a1和d,最后根據(jù)等差數(shù)列的通項公式求得an
(2)把(1)中求得的an代入bn=2an中,可知數(shù)列{bn}為等比數(shù)列,進而根據(jù)等比數(shù)列的求和公式求得答案.
⑴由題意知

所以                  …………6分
⑵當時,數(shù)列是首項為、公比為8的等比數(shù)列
所以               …………9分
時,所以
綜上,所以           …………12分
考點:本題主要考查了等差數(shù)列和等比數(shù)列的性質(zhì).考查了對數(shù)列通項公式和求和公式等基本知識的靈活運用.
點評:解決該試題的關鍵是利用等差數(shù)列的通項公式和等比數(shù)列的通項公式來求解通項公式,進而結合錯位相減法得到求和。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設Sn是等差數(shù)列{an}的前n項和,已知的等比中項為,的等差中項為1,求等差數(shù)列{an}的通項。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分16分)
已知等差數(shù)列的前項和為,且,,數(shù)列滿足:
,,
(1)求數(shù)列的通項公式;
(2)設,,證明: 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知等差數(shù)列{}的前項和為,且。數(shù)列為等比數(shù)列,且首項,
(1)求數(shù)列,的通項公式;
(2)若數(shù)列滿足,求數(shù)列的前項和為;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分) 已知數(shù)列為等差數(shù)列,且,
(1) 求數(shù)列的通項公式; (2) 令,求證:數(shù)列是等比數(shù)列.
(3)令,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知是首項為,公差為的等差數(shù)列.
(1)求通項;   
(2)設是首項為,公比為的等比數(shù)列,求數(shù)列的通項公式及其前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知是首項為,公差為的等差數(shù)列,的前項和.
(I)求通項
(II)設是首項為1,公比為3的等比數(shù)列,求數(shù)列的通項公式及其前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)               
已知函數(shù)的圖像經(jīng)過點.
(1)求該函數(shù)的解析式;
(2)數(shù)列中,若為數(shù)列的前項和,且滿足
證明數(shù)列成等差數(shù)列,并求數(shù)列的通項公式;
(3)另有一新數(shù)列,若將數(shù)列中的所有項按每一行比上一行多一項的規(guī)則排成
如下數(shù)表:


 
   
     
記表中的第一列數(shù)構成的數(shù)列即為數(shù)列,上表中,若從第三行起,第一行中的數(shù)按從左到右的順序均構成等比數(shù)列,且公比為同一個正數(shù).當
時,求上表中第行所有項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分) 已知在數(shù)列中,的前n項和,
(1)求數(shù)列的通項公式;
(2)令,數(shù)列的前n項和為

查看答案和解析>>

同步練習冊答案