【題目】已知以點A(﹣1,2)為圓心的圓與直線m:x+2y+7=0相切,過點B(﹣2,0)的動直線l與圓A相交于M、N兩點
(1)求圓A的方程.
(2)當|MN|=2 時,求直線l方程.

【答案】
(1)解:意知A(﹣1,2)到直線x+2y+7=0的距離為圓A半徑r,

,

∴圓A方程為(x+1)2+(y﹣2)2=20


(2)垂徑定理可知∠MQA=90°.且 ,

在Rt△AMQ中由勾股定理易知

設(shè)動直線l方程為:y=k(x+2)或x=﹣2,顯然x=﹣2合題意.

由A(﹣1,2)到l距離為1知

∴3x﹣4y+6=0或x=﹣2為所求l方程.


【解析】(1)當直線與圓相切時,根據(jù)圓心到直線的距離等于半徑列出等式,(2)根據(jù)垂徑定理,由勾股定理算出AQ,設(shè)出動直線的方程再結(jié)合點到直線方程可求出.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,一塊形狀為四棱柱的木料, 分別為的中點.

(1)要經(jīng)過將木料鋸開,在木料上底面內(nèi)應(yīng)怎樣畫線?請說明理由;

(2)若底面是邊長為2的菱形, , 平面,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直三棱柱中, , , ,點是線段上的動點.

(1)當點的中點時,求證: 平面

(2)線段上是否存在點,使得平面平面?若存在,試求出的長度;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某射擊運動員每次擊中目標的概率都是0.7.現(xiàn)采用隨機模擬的方法估計該運動員射擊4次,至少擊中2次的概率:先由計算器算出0~9之間取整數(shù)值的隨機數(shù),指定0,1,2表示沒有擊中目標,3,4,5,6,7,8,9表示擊中目標;因為射擊4次,故以每4個隨機數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

據(jù)此估計,該射擊運動員射擊4次至少擊中2次的概率為( )

A. 0.8 B. 0.85 C. 0.9 D. 0.95

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為 ,且過點 , , 是橢圓 上異于長軸端點的兩點.
(1)求橢圓 的方程;
(2)已知直線 ,且 ,垂足為 , ,垂足為 ,若 ,且 的面積是 面積的5倍,求 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年初的時候,國家政府工作報告明確提出, 年要堅決打好藍天保衛(wèi)戰(zhàn),加快解決燃煤污染問題,全面實施散煤綜合治理.實施煤改電工程后,某縣城的近六個月的月用煤量逐漸減少, 月至月的用煤量如下表所示:

月份

用煤量(千噸)

(1)由于某些原因, 中一個數(shù)據(jù)丟失,但根據(jù)月份的數(shù)據(jù)得出樣本平均值是,求出丟失的數(shù)據(jù);

(2)請根據(jù)月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)現(xiàn)在用(2)中得到的線性回歸方程中得到的估計數(shù)據(jù)與月的實際數(shù)據(jù)的誤差來判斷該地區(qū)的改造項目是否達到預(yù)期,若誤差均不超過,則認為該地區(qū)的改造已經(jīng)達到預(yù)期,否則認為改造未達預(yù)期,請判斷該地區(qū)的煤改電項目是否達預(yù)期?

(參考公式:線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若三邊的長為連續(xù)的三個正整數(shù),且A>B>C,3b=20acos A,則sin A:sin B:sin C為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個關(guān)于圓錐曲線的命題中:
①雙曲線 與橢圓 有相同的焦點;
②以拋物線的焦點弦(過焦點的直線截拋物線所得的線段)為直徑的圓與拋物線的準線是相切的;
③設(shè)A、B為兩個定點,k為常數(shù),若|PA|﹣|PB|=k,則動點P的軌跡為雙曲線;
④過定圓C上一點A作圓的動弦AB,O為原點,若 則動點P的軌跡為橢圓.其中正確的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三點A(1,2),B(﹣3,0),C(3,﹣2).
(1)求證△ABC為等腰直角三角形;
(2)若直線3x﹣y=0上存在一點P,使得△PAC面積與△PAB面積相等,求點P的坐標.

查看答案和解析>>

同步練習冊答案