設(shè)雙曲線的兩個焦點為,,一個頂點式,則的方程為          .
由題意知:,,所以,又因為雙曲線的焦點在軸上,所以C的方程為.的關(guān)系式,考查分析問題與解決問題的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線C上任意一點P到兩定點F1(-1,0)與F2(1,0)的距離之和為4.
(1)求曲線C的方程;
(2)設(shè)曲線C與x軸負半軸交點為A,過點M(-4,0)作斜率為k的直線l交曲線C于B、C兩點(B在M、C之間),N為BC中點.
(ⅰ)證明:k·kON為定值;
(ⅱ)是否存在實數(shù)k,使得F1N⊥AC?如果存在,求直線l的方程,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(滿分14分)如圖在平面直角坐標系中,分別是橢圓的左右焦點,頂點的坐標是,連接并延長交橢圓于點,過點軸的垂線交橢圓于另一點,連接.

(1)若點的坐標為,且,求橢圓的方程;
(2)若,求橢圓離心率的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓和橢圓的離心率相同,且點在橢圓上.
(1)求橢圓的方程;
(2)設(shè)為橢圓上一點,過點作直線交橢圓兩點,且恰為弦的中點。求證:無論點怎樣變化,的面積為常數(shù),并求出此常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線y2=ax的焦點到準線的距離為4,則此拋物線的焦點坐標為(  )
A.(-2,0)或(2,0)B.(2,0)C.(-2,0)D.(4,0)或(-4,0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知的三個頂點在拋物線上,為拋物線的焦點,點的中點,;
(1)若,求點的坐標;
(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線與橢圓相交于A、B兩點.
(1)若橢圓的離心率為,焦距為2,求線段AB的長;
(2)若向量與向量互相垂直(其中為坐標原點),當橢圓的離心率時,求橢圓長軸長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓的方程為,定直線的方程為.動圓與圓外切,且與直線相切.
(1)求動圓圓心的軌跡的方程;
(2)直線與軌跡相切于第一象限的點, 過點作直線的垂線恰好經(jīng)過點,并交軌跡于異于點的點,求直線的方程及的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為雙曲線的左右焦點,點上,,則(         )
A.B.C.D.

查看答案和解析>>

同步練習冊答案