不等式(1-x)(2x+3)>0的解集是
(-
3
2
,1)
(-
3
2
,1)
分析:對不等式先進行符號變換,(x-1)(2x+3)<0,然后再提取公因式2,從而求解.
解答:解:對不等式先進行符號變換,得
(x-1)(2x+3)<0,
∴(x-1)2x+
3
2
)<0,
解得x∈(-
3
2
,1)
,
故答案為:(-
3
2
,1)
點評:此題比較簡單,主要考查一元二次不等式的解法:變號、系數(shù)化為1等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)不等式組
-1≤x≤2
0≤y≤2
所表示的平面區(qū)域是W,從區(qū)域W中隨機取點M(x,y).
(Ⅰ)若x,y∈Z,求點M位于第一象限的概率;
(Ⅱ)若x,y∈R,求|OM|≤2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.
(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量e1=
1
1
,并且矩陣M對應(yīng)的變換將點(-1,2)變換成(9,15).求矩陣M.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
x=2+2sinα
y=2cosα
(α是參數(shù)).
現(xiàn)以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,寫出曲線C的極坐標(biāo)方程.
(3)選修4-5:不等式選講
解不等式|2x+1|-|x-4|>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足不等式組
1≤x+y≤4
y+2≥|2x-3|

(1)作出點(x,y)所在的平面區(qū)域并求出x2+y2的取值范圍;
(2)設(shè)m>-1,在(1)所求的區(qū)域內(nèi),求Q=y-mx的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(1+x)(2-x)>0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x、y滿足不等式組
1≤x+y≤4
y+2≥|2x-3|.

(1)作出點(x,y)所在的平面區(qū)域
(2)設(shè)a>-1,在(1)所求的區(qū)域內(nèi),求函數(shù)f(x,y)=y-ax的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案