(本題滿分10分) 設(shè)分別是從1,2,3,4這四個(gè)數(shù)中隨機(jī)選取的數(shù),用隨機(jī)變量X表示方程的實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì))。

(1)求方程有實(shí)根的概率;(2)求隨機(jī)變量X的分布列和數(shù)學(xué)期望;

(3)若中至少有一個(gè)為3,求方程有實(shí)根的概率。

 

【答案】

(1)

(2)的數(shù)學(xué)期望

(3),從而

【解析】解:(1)由題意知:設(shè)所有基本事件的集合為Ω,記“方程沒(méi)有實(shí)根”為事件,“方程有且只有一個(gè)實(shí)根”為事件B,“方程有兩個(gè)相異實(shí)根”為事件,則

,

,

。

所以Ω中的基本事件總數(shù)為16個(gè),中的基本事件總數(shù)為9個(gè),中的基本事件總數(shù)為2個(gè),中的基本事件總數(shù)為5個(gè)。

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052018504476564645/SYS201205201852003281486239_DA.files/image015.png">是互斥事件,故所求概率。

     

(2)由題意,的可能值為0,1,2,則

。

的分布列為

0

1

2

的數(shù)學(xué)期望。

(3)記“中至少有一個(gè)是3”為事件,“方程有實(shí)根”為事件,則易知,從而

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 17.本題滿分10分已知函數(shù)的圖象在y軸上的截距為,相鄰的兩個(gè)最值點(diǎn)是(1)求函數(shù);(2)設(shè),問(wèn)將函數(shù)的圖像經(jīng)過(guò)怎樣的變換可以得到 的圖像?(3)畫出函數(shù)在區(qū)間上的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分10分)

(Ⅰ)設(shè),求證:

(Ⅱ)設(shè),求證:三數(shù),中至少有一個(gè)不小于2.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆河南省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分10分)

如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長(zhǎng)AB=2,側(cè)棱BB1的長(zhǎng)為4,過(guò)點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F,

⑴求證:A1C⊥平面BDE;

⑵求A1B與平面BDE所成角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣高三下學(xué)期期初測(cè)試數(shù)學(xué)試卷 題型:解答題

(本題滿分10分)

如圖,已知正三棱柱的所有棱長(zhǎng)都為2,為棱的中點(diǎn),

(1)求證:平面

(2)求二面角的余弦值大小.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年遼寧省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本題滿分10分)

如圖,要計(jì)算西湖岸邊兩景點(diǎn)的距離,由于地形的限制,需要在岸上選取兩點(diǎn),現(xiàn)測(cè)得,, ,,求兩景點(diǎn)的距離(精確到0.1km).參考數(shù)據(jù):  

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案