17.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=$\frac{1}{3}$x3+ax(a∈R),且曲線f(x)在x=$\frac{1}{2}$處的切線與直線y=-$\frac{3}{4}$x-1平行.
(Ⅰ)求a的值及函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)y=f(x)-m在區(qū)間[-3,$\sqrt{3}$]上有三個零點,求實數(shù)m的取值范圍.

分析 (Ⅰ)首先求得導(dǎo)函數(shù),然后利用導(dǎo)數(shù)的幾何意義結(jié)合兩直線平行的關(guān)系求得a的值,由此求得函數(shù)f(x)的解析式;
(Ⅱ)將問題轉(zhuǎn)化為函數(shù)f(x)的圖象與y=m有三個公共點,由此結(jié)合圖象求得m的取值范圍.

解答 解:(Ⅰ)當(dāng)x>0時,f′(x)=x2+a,
因為曲線f(x)在x=$\frac{1}{2}$處的切線與直線y=-$\frac{3}{4}$x-1平行,
所以f′($\frac{1}{2}$)=$\frac{1}{4}$+a=-$\frac{3}{4}$,解得a=-1,
所以f(x)=$\frac{1}{3}$x3-x,
設(shè)x<0則f(x)=-f(-x)=$\frac{1}{3}$x3-x,
又f(0)=0,所以f(x)=$\frac{1}{3}$x3-x.
(Ⅱ)由(Ⅰ)知f(-3)=-6,f(-1)=$\frac{2}{3}$,f(1)=-$\frac{2}{3}$,f($\sqrt{3}$)=0,
所以函數(shù)y=f(x)-m在區(qū)間[-3,$\sqrt{3}$]上有三個零點,
等價于函數(shù)f(x)在[-3,$\sqrt{3}$]上的圖象與y=m有三個公共點.
結(jié)合函數(shù)f(x)在區(qū)間[-3,$\sqrt{3}$]上大致圖象可知,實數(shù)m的取值范圍是(-$\frac{2}{3}$,0).

點評 本題考查導(dǎo)數(shù)知識的綜合運用,考查導(dǎo)數(shù)的幾何意義,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=x|x-a|(a∈R).
(1)若a=1,解不等式f(x)<2x;
(2)若對任意的x∈[1,4],都有f(x)<4+x成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)等差數(shù)列{an}的前n項和為Sn,若數(shù)列{an}是單調(diào)遞增數(shù)列,且滿足a5≤6,S3≥9,則a6的取值范圍是(3,7].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知定義在(0,+∞)上的單調(diào)函數(shù)f(x),對?x∈(0,+∞),都有f[f(x)-lnx]=e+1,則函數(shù)g(x)=f(x)-f′(x)-e的零點所在區(qū)間是( 。
A.(1,2)B.(2,3)C.($\frac{1}{2}$,1)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)向量$\overrightarrow{a}$=(cosx,-sinx),$\overrightarrow$=(-cos($\frac{π}{2}$-x),cosx),且$\overrightarrow{a}$=t$\overrightarrow$,t≠0,則sin2x的值等于( 。
A.1B.-1C.±1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線l與橢圓C:$\frac{x^2}{4}+{y^2}=1$交于A,B兩點,且|AB|=2,則直線l與圓x2+y2=1的位置關(guān)系為( 。
A.相離B.相交C.相切D.相交或相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.定義:二階行列式$|\begin{array}{l}{a}&\\{c}&vgfyxi5\end{array}|$=ad-bc(a,b,c,d∈R).已知數(shù)列{an}滿足a1=1,a2=2,$|\begin{array}{l}{{a}_{n+2}}&{{a}_{n+1}}\\{{a}_{n+1}}&{{a}_{n}}\end{array}|$=(-1)n+1(n∈N*).
(Ⅰ)求a3,a4,a5;
(Ⅱ)求證:an+2=2an+1+an(n∈N*
(Ⅲ)試問該數(shù)列任意兩個相鄰項的平方和仍然是該數(shù)列中的一個項嗎?如果是,請證明你的結(jié)論;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點P(0,-2),點A,B分別為橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右頂點,直線BP交E于點Q,△ABP是等腰直角三角形,且$\overrightarrow{PQ}$=$\frac{3}{2}\overrightarrow{QB}$.
(1)求E的方程;
(2)設(shè)過點的動直線l與E相交于M,N兩點,當(dāng)坐標(biāo)原點O位于MN以為直徑的圓外時,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知過球面上A,B,C三點的截面和球心的距離等于球半徑的一半,且AB=BC=CA=2,則球面的面積是$\frac{64π}{9}$.

查看答案和解析>>

同步練習(xí)冊答案