精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)是定義在R上的偶函數,且當x≤0時,f(x)=x2+2x.
(1)現已畫出函數f(x)在y軸左側的圖象,如圖所示,請補出完整函數f(x)的圖象,并根據圖象寫出函數f(x)的增區(qū)間;

(2)寫出函數f(x)的解析式和值域.

【答案】
(1)解:因為函數為偶函數,故圖象關于y軸對稱,補出完整函數圖象如有圖:

所以f(x)的遞增區(qū)間是(﹣1,0),(1,+∞)


(2)解:設x>0,則﹣x<0,所以f(﹣x)=x2﹣2x,因為f(x)是定義在R上的偶函數,所以f(﹣x)=f(x),所以x>0時,f(x)=x2﹣2x,

故f(x)的解析式為

值域為{y|y≥﹣1}


【解析】(1)因為函數為偶函數,故圖象關于y軸對稱,由此補出完整函數f(x)的圖象即可,再由圖象直接可寫出f(x)的增區(qū)間.(2)可由圖象利用待定系數法求出x>0時的解析式,也可利用偶函數求解析式,值域可從圖形直接觀察得到.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在△ABC中,若 = ,則△ABC的形狀是(
A.銳角三角形
B.直角三角形
C.等腰三角形
D.等腰或直角三角形

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點,橢圓的左,右頂點分別為.過點的直線與橢圓交于兩點,且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側的動點,且滿足,試問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)= ,g(x)=
(1)當1≤x<2時,求g(x);
(2)當x∈R時,求g(x)的解析式,并畫出其圖象;

(3)求方程xf[gx]=2g[f(x)]的解.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設等差數列{an}的前n項和為Sn , 且S4=4S2 , a2n=2an+1.
(1)求數列{an}的通項公式;
(2)求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:x2+y2﹣2x+4y﹣4=0,是否存在斜率為1的直線l,使l被圓C截得的弦長AB為直徑的圓過原點,若存在求出直線的方程l,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)過原點的直線與橢圓交于,兩點(,不是橢圓的頂點),點在橢圓上,且.直線軸、軸分別交于,兩點.設直線,的斜率分別為,,證明存在常數使得,并求出的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}為單調遞減的等差數列,a1+a2+a3=21,且a1﹣1,a2﹣3,a3﹣3成等比數列.
(1)求數列{an}的通項公式;
(2)設bn=|an|,求數列{bn}的前項n和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知sin2C= cosC,其中C為銳角.
(1)求角C的大小;
(2)a=1,b=4,求邊c的長.

查看答案和解析>>

同步練習冊答案