精英家教網 > 高中數學 > 題目詳情

(本小題滿分分)某學校高三年級有學生1000名,經調查研究,其中750名同學經常參加體育鍛煉(稱為A類同學),另外250名同學不經常參加體育鍛煉(稱為B類同學),現用分層抽樣方法(按A類、B類分二層)從該年級的學生中共抽查100名同學.
(Ⅰ)求甲、乙兩同學都被抽到的概率,其中甲為A類同學,乙為B類同學;
(Ⅱ) 測得該年級所抽查的100名同學身高(單位:厘米) 頻率分布直方圖如右圖:
(ⅰ) 統計方法中,同一組數據常用該組區(qū)間的中點值(例如區(qū)間的中點值為165)作為代表.據此,計算這100名學生身高數據的期望及標準差(精確到0.1);
(ⅱ) 若總體服從正態(tài)分布,以樣本估計總體,據此,估計該年級身高在范圍中的學生的人數.
(Ⅲ) 如果以身高達170cm作為達標的標準,對抽取的100名學生,得到下列聯表:
體育鍛煉與身高達標2×2列聯表

 
身高達標
身高不達標
總計
積極參加體育鍛煉
40
 
 
不積極參加體育鍛煉
 
15
 
總計
 
 
100
(ⅰ)完成上表;
(ⅱ)請問有多大的把握認為體育鍛煉與身高達標有關系?
參考公式:K=,參考數據:
P(Kk)
0.40
0.25
0.15
0.10
0.05
0.025
k
0.708
1.323
2.072
2.706
3.841
5.024

(1)1/100(2)=170,(3)()

解析

練習冊系列答案
相關習題

科目:高中數學 來源:2011屆湖南省長沙市第一中學高三第四次月考理科數學試卷 題型:解答題

(本小題滿分13分)某企業(yè)的產品以往專銷歐美市場,在全球金融風暴的影響下,歐美市場的銷量受到嚴重影響,該企業(yè)在政府的大力扶助下積極開拓國內市場,并基本形成了市場規(guī)模;自2009年9月以來的第n個月(2009年9月為第一個月)產品的內銷量、出口量和銷售總量(銷售總量=內銷量與出口量的和)分別為bn、cn和an(單位:萬件),依據銷售統計數據發(fā)現形成如下營銷趨勢:bn + 1 =" a" an,cn + 1 =" an" + b an2 (其中a、b為常數),已知a1 = 1萬件,a2 = 1.5萬件,a3 = 1.875萬件.
(1)求a,b的值,并寫出an + 1與an滿足的關系式;
(2)試用你所學的數學知識論證銷售總量逐月遞增且控制在2萬件內;
(3)試求從2009年9月份以來的第n個月的銷售總量an關于n的表達式.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年遼寧省高三第五次模擬理數試卷(解析版) 題型:解答題

(本小題滿分12分)

某大學高等數學老師上學期分別采用了兩種不同的教學方式對甲、乙兩個大一新生班進行教改試驗(兩個班人數均為60人,入學數學平均分數和優(yōu)秀率都相同;勤奮程度和自覺性都一樣),F隨機抽取甲、乙兩班各20名同學的上學期數學期末考試成績,得到莖葉圖如下:

(Ⅰ)依莖葉圖判斷哪個班的平均分高?

(Ⅱ)從乙班這20名同學中隨機抽取兩名高等數學成績不得低于85分的同學,求成績?yōu)?0分的同學被抽中的概率;

(Ⅲ)學校規(guī)定:成績不低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013042219471901602039/SYS201304221948097816603074_ST.files/image003.png">列聯表,并判斷“能否在犯錯誤的概率不超過0.025的前提下認為成績優(yōu)秀與教學方式有關?”

 

甲班

乙班

合計

優(yōu)秀

 

 

 

不優(yōu)秀

 

 

 

合計

 

 

 

下面臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:其中) 

(Ⅳ)從乙班高等數學成績不低于85分的同學中抽取2人,成績不低于90分的同學得獎金100元,否則得獎金50元,記為這2人所得的總獎金,求的分布列和數學期望。

 

查看答案和解析>>

科目:高中數學 來源:2014屆江西省高二第一次月考理科數學試卷(解析版) 題型:解答題

(本小題滿分12分)某企業(yè)員工500人參加“學雷鋒”志愿活動,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如右圖所示.

(1)下表是年齡的頻數分布表,求正整數的值;

區(qū)間

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人數

50

50

150

 

 

 

 

 

(2)現在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組的人數分別是多少?

(3)在(2)的前提下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求至少有1人年齡在第3組的概率.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山西省太原市高三2月月考文科數學 題型:解答題

(本小題滿分12分)

為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:

 

喜愛打籃球

不喜愛打籃球

合計

男生

 

5

 

女生

10

 

[來源:學|科|網]

合計

 

 

50[]

已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為

(1)請將上面的列聯表補充完整

(2)是否有99.5%的把握認為喜愛打籃球與性別有關?說明你的理由;

(3)已知喜愛打籃球的10位女生中,還喜歡打羽毛球,

還喜歡打乒乓球,還喜歡踢足球,現在從喜歡打羽毛球、喜歡打乒乓球、

喜歡踢足球的8位女生中各選出1名進行其他方面的調查,求不全被選

中的概率.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

查看答案和解析>>

科目:高中數學 來源:北京朝陽區(qū)09-10學年高一第二學期期末考試數學試題 題型:解答題

(本小題滿分14分)

某校高一年級要從3名男生,,和2名女生,中任選3名代表參加學校的演講比賽.學

科網          (1)求男生被選中的概率;

  (2)求男生和女生至少一人被選中的概率.

 

查看答案和解析>>

同步練習冊答案