考點:運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:分當(dāng)k為偶數(shù)時、當(dāng)k為奇數(shù)時兩種情況,分別利用誘導(dǎo)公式化簡所給的函數(shù)式,從而求得結(jié)果.
解答:
解:當(dāng)k為偶數(shù)時,設(shè)k=2n,n∈z,則
sin(kπ-α)•cos[(k-1)π-α] |
sin[(k+1)π+α]•cos(kπ+α) |
=
sin(2nπ-α)cos[(2n-1)π-α] |
sin[(2n+1)π+α]cos(2nπ+α) |
=
=-1.
當(dāng)k為奇數(shù)時,設(shè)k=2n+1,n∈z,則
sin(kπ-α)•cos[(k-1)π-α] |
sin[(k+1)π+α]•cos(kπ+α) |
=
sin(2nπ+π-α)•cos(2nπ-α) |
sin(2nπ+2π+α)•cos(2nπ+π+α) |
=
=-1.
綜上可得,
sin(kπ-α)•cos[(k-1)π-α] |
sin[(k+1)π+α]•cos(kπ+α) |
=-1.
點評:本題主要考查利用誘導(dǎo)公式進行化簡求值,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.