已知橢圓x2+=1的左、右兩個頂點分別為A,B.雙曲線C的方程為x2-
=1. 設(shè)點P在第一象限且在雙曲線C上,直線AP與橢圓相交于另一點T.
(Ⅰ)設(shè)P, T兩點的橫坐標分別為x1,x2,證明x1· x2=1;
(Ⅱ)設(shè)△TAB與△POB(其中O為坐標原點)的面積分別為S1與S2 ,且·
≤15,求S
-S
的取值范圍.
【解析】(Ⅰ)設(shè)點P,T
,
直線AP的斜率為k(k>0),則直線AP的方程為y=k(x+1),
聯(lián)立方程組,整理得(4+k2)x2+2k2x+k2-4=0,
解得x=-1或x=,故x2=
.
同理可得x1=.所以x1·x2=1.
(Ⅱ)設(shè)點P(x1,y1),T(x2,y2),
則=(-1-x1,-y1),
=(1-x1,-y1).
因為·
≤15,所以(-1-x1)(1-x1)+y
≤15,
即x+y
≤16.
因為點P在雙曲線上,則x-
=1,
所以x+4x
-4≤16,即x
≤4.
因為點P是雙曲線在第一象限內(nèi)的一點,則1<x1≤2.
因為S1==
,S2=
=
,
所以S-S
=y
-
y
=(4-4x
)-(x
-1)=5-x
-4x
.
由(Ⅰ)知,x1· x2=1,即x2=.
設(shè)t=x,則1<t≤4,
S-S
=5-t-
.
設(shè)f(t)=5-t-,則f′(t)=-1+
=
,
當(dāng)1<t<2時,f′(t)>0,當(dāng)2<t≤4時,f′(t)<0,
所以函數(shù)f(t)在(1,2)上單調(diào)遞增,在上單調(diào)遞減.
因為f(2)=1,f(1)=f(4)=0,
所以當(dāng)t=4,即x1=2時,(S-S
)min=f(4)=0;
當(dāng)t=2,即x1=時,(S
-S
)max=f(2)=1,
所以S-S
的取值范圍為
.
科目:高中數(shù)學(xué) 來源:成功之路·突破重點線·數(shù)學(xué)(學(xué)生用書) 題型:044
已知橢圓x2+=1及兩點P(-2,0)、Q(0,1),過點P作斜率為k的直線交橢圓于不同的兩點A、B,設(shè)線段AB的中點為M,連結(jié)QM.
(1)k為何值時,直線QM與橢圓的準線平行?
(2)試判斷直線QM能否過橢圓的頂點?若能,求出相應(yīng)的k值,若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:貴州省云峰中學(xué)2010屆高三下學(xué)期3月月考數(shù)學(xué)試題 題型:044
已知橢圓x2+=1(b∈(0,1))的左焦點為F,左右頂點分別為A、C,上頂點為B,過F,B,C三點作圓P,其中圓心P的坐標為(m,n)
(1)當(dāng)m+n>0時,橢圓的離心率的取值范圍
(2)直線AB能否和圓P相切?證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:新疆烏魯木齊一中2012屆高三上學(xué)期第三次月考數(shù)學(xué)文科試題 題型:044
已知橢圓C:=1(a>b>0)的焦距為4,且與橢圓x2+
=1有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同兩點A、B.
(1)求橢圓C的標準方程;
(2)當(dāng)橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省廣州市2012屆高三第一次模擬考試數(shù)學(xué)文科試題 題型:044
已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若對任意a∈[3,4],函數(shù)f(x)在R上都有三個零點,求實數(shù)b的取值范圍.
已知橢圓x2+=1的左、右兩個頂點分別為A、B.曲線C是以A、B兩點為頂點,離心率為
的雙曲線,設(shè)點P在第一象限且在曲線C上,直線AP與橢圓相交于另一點T.
(1)求曲線C的方程;
(2)設(shè)點P、T的橫坐標分別為x1,x2,證明:x1·x2=1;
(3)設(shè)△TAB與△POB(其中O為坐標原點)的面積分別為S1與S2,且,求S
-S
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com