等比數(shù)列{cn}滿足cn+1+cn=10·4n-1(n∈N*),數(shù)列{an}的前n項(xiàng)和為Sn,且an=log2cn.
(1)求an,Sn;
(2)數(shù)列{bn}滿足bn,Tn為數(shù)列{bn}的前n項(xiàng)和,是否存在正整數(shù)m(m>1),使得T1,Tm,T6m成等比數(shù)列?若存在,求出所有m的值;若不存在,請(qǐng)說明理由.

(1)an=2n-1,Sn=n2.(2)存在正整數(shù)m=2,使得T1,Tm,T6m成等比數(shù)列.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知成等比數(shù)列, 公比為, 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的首項(xiàng)a1=2a+1(a是常數(shù),且a≠-1),
an=2an-1+n2-4n+2(n≥2),數(shù)列{bn}的首項(xiàng)b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項(xiàng)起是以2為公比的等比數(shù)列;
(2)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,且{Sn}是等比數(shù)列,求實(shí)數(shù)a的值;
(3)當(dāng)a>0時(shí),求數(shù)列{an}的最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和Snn2(n∈N*),等比數(shù)列{bn}滿足b1a1,2b3b4.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若cnan·bn(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列{an}的所有項(xiàng)均為正數(shù),首項(xiàng)a1=1,且a4,3a3a5成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{an+1λan}的前n項(xiàng)和為Sn,若Sn=2n-1(n∈N*),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列{an}滿足:a1=1,an+1=3an+2n+1(n∈N*),求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為,已知, 
(1)求數(shù)列的通項(xiàng)公式;
(2)若,數(shù)列的前n項(xiàng)和為,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,.證明:數(shù)列是公比為的等比數(shù)列的充要條件是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列,滿足,若。
(1)求; (2)求證:是等比數(shù)列; (3)若數(shù)列的前項(xiàng)和為,求

查看答案和解析>>

同步練習(xí)冊(cè)答案