已知向量
a
=(2,-3,0),
b
=(k,0,3),若
a
,
b
成120°的角,則k=
 
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專題:空間向量及應(yīng)用
分析:由空間向量的數(shù)量積定義解答.
解答: 解:由已知,
a
b
=(2,-3,0)(k,0,3)=
13
k2+9
cos120°=2k,所以k=-
39
;
故答案為:-
39
點(diǎn)評(píng):本題考查了空間向量的數(shù)量積定義以及坐標(biāo)表示.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行六面體ABCD-A1B1C1D1中,點(diǎn)M為A1C1與B1D1的交點(diǎn),若
A1B1
=
a
A1D1
=
b
,
A1A
=
c
,點(diǎn)N在BM上,且
BN
=2
NM
,則向量
AN
等于( 。
A、
1
3
a
+
2
3
b
-
2
3
c
B、
2
3
a
+
1
3
b
-
2
3
c
C、
2
3
a
-
1
3
b
-
2
3
c
D、
1
3
a
-
2
3
b
-
2
3
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某樣本數(shù)據(jù)的莖葉圖如圖所示,若該組數(shù)據(jù)的中位數(shù)為85,則該組數(shù)據(jù)的眾數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某客運(yùn)公司用A,B兩種型號(hào)的車輛承擔(dān)甲、乙兩地間的長(zhǎng)途客運(yùn)業(yè)務(wù),每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營(yíng)運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過(guò)21輛車的客運(yùn)車隊(duì),并要求B型車不多于A型車7輛.若每天要以不少于900人運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的營(yíng)運(yùn)成本最小,那么應(yīng)配備A型車、B型車各多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(1,2,1),B(-1,3,4),P為AB的中點(diǎn),則|
AP
|=( 。
A、5
2
B、
14
2
C、
7
2
D、
14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)統(tǒng)計(jì),數(shù)學(xué)的學(xué)習(xí)時(shí)間(單位:小時(shí))與成績(jī)(單位:分)近似線性相關(guān)關(guān)系,對(duì)某小組學(xué)生每周用于數(shù)學(xué)的學(xué)習(xí)時(shí)間x與數(shù)學(xué)成績(jī)y進(jìn)行數(shù)據(jù)收集如表
 x 15 16 18 19 22
 y 102 98 115 115 120
由表中樣本數(shù)據(jù)求的回歸方程為
y
=bx+
a
,且直線l:x+18y=100,則點(diǎn)(
a
,
b
)在直線l的.
A、右下方B、右上方
C、左下方D、左上方

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2ax-ln2x,其中a∈R.
(1)當(dāng)a=1時(shí),求f(x)在點(diǎn)(
1
2
,f(
1
2
))處切線方程,并判斷切線與f(x)的交點(diǎn)個(gè)數(shù),
(2)若f(x)存在零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

棱長(zhǎng)為3的正方體的外接球(各頂點(diǎn)均在球面上)的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P為曲線C:y=x2-x+3上的點(diǎn),且曲線C在點(diǎn)P處切線斜率的取值范圍為[0,1],則點(diǎn)P橫坐標(biāo)的取值范圍為( 。
A、[-1,-
1
2
]
B、[-1,0]
C、[0,1]
D、[
1
2
,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案