【題目】寫出下列函數(shù)的單調(diào)區(qū)間.

(1)y=|x+1|; (2)y=-x2+ax;

(3)y=|2x-1|; (4)y=-.

【答案】(1)詳見解析;(2)詳見解析;(3)詳見解析;(4)詳見解析.

【解析】試題分析:(1)根據(jù)函數(shù)的圖象寫出單調(diào)區(qū)間;(2)開口向下的二次函數(shù),對稱軸為,進(jìn)而可得單調(diào)區(qū)間;(3)根據(jù)函數(shù)圖象寫出單調(diào)區(qū)間;(4)根據(jù)反比例函數(shù)的對稱中心和系數(shù)為負(fù)寫出單調(diào)增區(qū)間.

試題解析:

(1)單調(diào)增區(qū)間[-1,+∞),單調(diào)減區(qū)間(-∞,-1];

(2)單調(diào)增區(qū)間(-∞,]單調(diào)減區(qū)間[,+∞);

(3)單調(diào)增區(qū)間[,+∞),單調(diào)減區(qū)間(-∞]

(4)單調(diào)增區(qū)間(-∞,-2)和(-2,+∞),無減區(qū)間

點睛:本題考查函數(shù)的單調(diào)性,屬于基礎(chǔ)題.二次函數(shù)的單調(diào)性與開口方向和對稱軸有關(guān),可畫出函數(shù)的大概圖象求出單調(diào)區(qū)間;反比例類型的函數(shù)要注意先求定義域,進(jìn)而求出函數(shù)的對稱中心,再由系數(shù)的正負(fù)決定增減, 函數(shù),k>0,函數(shù)在上分別單調(diào)遞減;k<0, 函數(shù)在上分別單調(diào)遞增.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求的值域;

(2)若不等式上恒成立,求實數(shù)的取值范圍;

(3)當(dāng), )時,函數(shù) 的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是否存在常數(shù),使等式對于一切都成立?若不存在,說明理由;若存在,請用數(shù)學(xué)歸納法證明?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求曲線的普通方程及極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程是,射線 與曲線交于點與直線交于點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在實數(shù)對(),使得等式對定義域中的每一個都成立,則稱函數(shù)“()型函數(shù)”.

(1) 判斷函數(shù)是否為 “()型函數(shù),并說明理由;

(2) 若函數(shù)“()型函數(shù)”,求出滿足條件的一組實數(shù)對;

(3)已知函數(shù)“()型函數(shù)”,對應(yīng)的實數(shù)對(1,4).當(dāng) , ,若當(dāng),都有,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如右圖所示,設(shè)E、F、E1F1分別是長方體ABCDA1B1C1D1的棱AB、CD、A1B1、C1D1的中點,則平面EFD1A1與平面BCF1E1的位置關(guān)系是 (  )

A. 平行 B. 相交 C. 異面 D. 不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人獨立地對某一技術(shù)難題進(jìn)行攻關(guān)。甲能攻克的概率為,乙能攻克的概率為,丙能攻克的概率為.

1)求這一技術(shù)難題被攻克的概率;

2)若該技術(shù)難題末被攻克,上級不做任何獎勵;若該技術(shù)難題被攻克,上級會獎勵萬元。獎勵規(guī)則如下:若只有1人攻克,則此人獲得全部獎金萬元;若只有2人攻克,則獎金獎給此二人,每人各得萬元;若三人均攻克,則獎金獎給此三人,每人各得萬元。設(shè)甲得到的獎金數(shù)為X,求X的分布列和數(shù)學(xué)期望。(本題滿分12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,恒有成立,求實數(shù)的取值范圍;

(2)若函數(shù)有兩個極值點,求證:.

查看答案和解析>>

同步練習(xí)冊答案