已知函數(shù)和函數(shù),其中為參數(shù),且滿足.
(1)若,寫出函數(shù)的單調(diào)區(qū)間(無需證明);
(2)若方程在上有唯一解,求實(shí)數(shù)的取值范圍;
(3)若對任意,存在,使得成立,求實(shí)數(shù)的取值范圍.
(1)的單調(diào)增區(qū)間為,,單調(diào)減區(qū)間為;(2)或;(3).
解析試題分析:(1)當(dāng)時,,由二次函數(shù)的圖像與性質(zhì)可寫出函數(shù)的單調(diào)區(qū)間;(2)先將在上有唯一解轉(zhuǎn)化為在上有唯一解,進(jìn)而兩邊平方得到或,要使時,有唯一解,則只須或即可,問題得以解決;(3)對任意,存在,使得成立的意思就是的值域應(yīng)是的值域的子集,然后分別針對與兩種情形進(jìn)行討論求解,最后將這兩種情況求解出的的取值范圍取并集即可.
試題解析:(1)時, 1分
函數(shù)的單調(diào)增區(qū)間為,,單調(diào)減區(qū)間為 4分
(2)由在上有唯一解
得在上有唯一解 5分
即,解得或 6分
由題意知或
即或
綜上,的取值范圍是或 8分
(3)
則的值域應(yīng)是的值域的子集 9分
①時,在上單調(diào)遞減,上單調(diào)遞增,故 10分
在上單調(diào)遞增,故 11分
所以,即 12分
②當(dāng)時,在上單調(diào)遞減,故
在上單調(diào)遞減,上單調(diào)遞增,故
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了保護(hù)環(huán)境,某工廠在國家的號召下,把廢棄物回收轉(zhuǎn)化為某種產(chǎn)品,經(jīng)測算,處理成本(萬元)與處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:
,且每處理一噸廢棄物可得價(jià)值為萬元的某種產(chǎn)品,同時獲得國家補(bǔ)貼萬元.
(1)當(dāng)時,判斷該項(xiàng)舉措能否獲利?如果能獲利,求出最大利潤;
如果不能獲利,請求出國家最少補(bǔ)貼多少萬元,該工廠才不會虧損?
(2)當(dāng)處理量為多少噸時,每噸的平均處理成本最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單
位:千克)與銷售價(jià)格x(單位:元/千克)滿足關(guān)系式y=+10(x-6)2,其中3<x<6,a為常數(shù).已知銷售價(jià)格為5元/千克時,每日可售出該商品11千克.
①求a的值;
②若該商品的成本為3元/千克,試確定銷售價(jià)格x的值,使商場每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù):,其中是儀器的月產(chǎn)量.
(注:總收益=總成本+利潤)
(1)將利潤表示為月產(chǎn)量的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)=x2+10x(萬元).當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x+-1450(萬元).每件商品售價(jià)為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式.
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)f(x)=x2+(2a-1)x+1-2a.
(1)判斷命題“對于任意的a∈R(R為實(shí)數(shù)集),方程f(x)=1必有實(shí)數(shù)根”的真假,并寫出判斷過程.
(2)若y=f(x)在區(qū)間(-1,0)及(0,)內(nèi)各有一個零點(diǎn),求實(shí)數(shù)a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某村莊擬修建一個無蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時該蓄水池的體積最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com