在△ABC中,已知c=,b=1,B=30°.(1)求角A; (2)求△ABC的面積.
(1)A=90°或A=30°; (2)或.
解析試題分析:(1) 先由已知及正弦定理求出角C的正弦函數(shù)值,進(jìn)而求得角C的大小,再由三角形的內(nèi)角和定理求出角A的大小,注意角C的取值范圍及三角函數(shù)的多值性,以防漏解;(2)用兩邊及夾角正弦值積的一半求三角形的面積.
試題解析:(1)由=得sin C=sin B=×sin 30°=.
∵c>b,∴C>B,∴C=60°或C=120°.∴A=90°或A=30°.
(2)S△ABC=bcsin A=×1×sin 90°=.
或S△ABC=bcsin A=×1××sin 30°=.即△ABC的面積為或.
考點(diǎn):1.正弦定理;2.三角形的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,已知∠B=45°,D是BC邊上的一點(diǎn),AD=10,AC=14,DC=6,求AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且(2b+c)cosA十a(chǎn)cosC =0。
(1)求角A的大。
(2)求的最大值,并求取得最大值時(shí)角B、C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,
且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大。
(2)求sinB+sinC的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,測(cè)量河對(duì)岸的塔高AB時(shí),可以選與塔底B在同一水平面內(nèi)的兩個(gè)測(cè)點(diǎn)C與D.測(cè)得,并在點(diǎn)C測(cè)得塔頂A的仰角為,求塔高AB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)M是弧度為的∠AOB的角平分線上的一點(diǎn),且OM=1,過M任作一直線與∠AOB的兩邊分別交OA、OB于點(diǎn)E,F(xiàn),記∠OEM=x.
(1)若時(shí),試問x的值為多少?(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、、分別為的三邊、、所對(duì)的角,向量,,且.
(1)求角的大;
(2)若,,成等差數(shù)列,且,求邊的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com