【題目】函數(shù)f(x)=Asin(ωx+)(A,ω,是常數(shù),A>0,ω>0)的部分圖象如圖所示,下列結(jié)論: ①最小正周期為π;
②將f(x)的圖象向左平移 個單位,所得到的函數(shù)是偶函數(shù);
③f(0)=1;
;

其中正確的是(

A.①②③
B.②③④
C.①④⑤
D.②③⑤

【答案】C
【解析】解:由圖可得:函數(shù)函數(shù)y=Asin(ωx+)的最小值﹣|A|=﹣2, 令A(yù)>0,則A=2,又∵ = ,ω>0
∴T=π,ω=2,
∴y=2sin(2x+
將( ,﹣2)代入y=2sin(2x+)得sin( +)=﹣1
+= +2kπ,k∈Z
= +2kπ,k∈Z
∴f(x)=2sin(2x+ ).
∴f(0)=2sin = ,f(x+ )=2sin[2(x+ )+ ]=2sin(2x+ ).
f( )=2sin( + )=1.對稱軸為直線x= ,一個對稱中心是( ,0),故②③不正確;
根據(jù)f(x)=2sin(2x+ )的圖象可知,④ 正確;
由于f(x)=2sin(2x+ )的圖象關(guān)于點(diǎn)( ,0)中心對稱,故⑤ 正確.
綜上所述,其中正確的是①④⑤.br />故選C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用的相關(guān)知識可以得到問題的答案,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l:y=k(x+1)(k≠0)與橢圓3x2+y2=a2(a>0)相交于A、B兩個不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn). (Ⅰ)證明:a2 ;
(Ⅱ)若 ,求△OAB的面積取得最大值時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}中,a2=2,a5=128.
(1)求通項(xiàng)an;
(2)若bn=log2an , 數(shù)列{bn}的前n項(xiàng)和為Sn , 且Sn=360,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足:bnan1annN*).

1)若a11,bnn,求數(shù)列{an}的通項(xiàng)公式;

2)若bn1bn1bnn2),且b11,b22

)記cna6n1n1),求證:數(shù)列{cn}為等差數(shù)列;

)若數(shù)列中任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,求首項(xiàng)a1應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知非零向量 滿足| |=1,且( )( + )=
(1)求| |;
(2)當(dāng) =- 時,求向量 +2 的夾角θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知AB、C是橢圓上不同的三點(diǎn), ,C在第三象限,線段BC的中點(diǎn)在直線OA上。

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求點(diǎn)C的坐標(biāo);

3)設(shè)動點(diǎn)P在橢圓上(異于點(diǎn)AB、C)且直線PB, PC分別交直線OAMN兩點(diǎn),證明為定值并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】支籃球隊(duì)進(jìn)行單循環(huán)比賽(任兩支球隊(duì)恰進(jìn)行一場比賽),任兩支球隊(duì)之間勝率都是.單循環(huán)比賽結(jié)束,以獲勝的場次數(shù)作為該隊(duì)的成績,成績按從大到小排名次順序,成績相同則名次相同.有下列四個命題:

:恰有四支球隊(duì)并列第一名為不可能事件; :有可能出現(xiàn)恰有兩支球隊(duì)并列第一名;

:每支球隊(duì)都既有勝又有敗的概率為; :五支球隊(duì)成績并列第一名的概率為.

其中真命題是

A. ,, B. ,, C. .. D. ..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中均為實(shí)數(shù), 為自然對數(shù)的底數(shù).

(I)求函數(shù)的極值;

(II)設(shè),若對任意的,

恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊答案