【題目】一款擊鼓小游戲的規(guī)則如下:每盤(pán)游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂(lè),要么不出現(xiàn)音樂(lè);每盤(pán)游戲擊鼓三次后,出現(xiàn)一次音樂(lè)獲得10分,出現(xiàn)兩次音樂(lè)獲得20分,出現(xiàn)三次音樂(lè)獲得100分,沒(méi)有出現(xiàn)音樂(lè)則扣除200分(即獲得分).設(shè)每次擊鼓出現(xiàn)音樂(lè)的概率為,且各次擊鼓出現(xiàn)音樂(lè)相互獨(dú)立.

1)設(shè)每盤(pán)游戲獲得的分?jǐn)?shù)為,求的分布列;

2)玩三盤(pán)游戲,至少有一盤(pán)出現(xiàn)音樂(lè)的概率是多少?

3)玩過(guò)這款游戲的許多人都發(fā)現(xiàn),若干盤(pán)游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒(méi)有增加反而減少了.請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因.

【答案】1;(2;

3)每盤(pán)所得分?jǐn)?shù)的期望為負(fù)數(shù),所以玩得越多,所得分?jǐn)?shù)越少.

【解析】

試題(1)本題屬于獨(dú)立重復(fù)試驗(yàn)問(wèn)題,利用即可求得的分布列;(2)玩一盤(pán)游戲,沒(méi)有出現(xiàn)音樂(lè)的概率為.“玩三盤(pán)游戲,至少有一盤(pán)出現(xiàn)音樂(lè)的對(duì)立事件是玩三盤(pán)游戲,三盤(pán)都沒(méi)有出現(xiàn)音樂(lè)由此可得玩三盤(pán)游戲,至少有一盤(pán)出現(xiàn)音樂(lè)的概率;(3

試題解答:(1.所以的分布列為

X

-200

10

20

100







2)玩一盤(pán)游戲,沒(méi)有出現(xiàn)音樂(lè)的概率為,玩三盤(pán)游戲,至少有一盤(pán)出現(xiàn)音樂(lè)的概率為.

3)由(1)得:,即每盤(pán)所得分?jǐn)?shù)的期望為負(fù)數(shù),所以玩得越多,所得分?jǐn)?shù)越少的可能性更大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科研單位在研發(fā)鈦合金產(chǎn)品的過(guò)程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測(cè)得該產(chǎn)品的性能指標(biāo)值值越大產(chǎn)品的性能越好)與這種新合金材料的含量(單位:克)的關(guān)系:當(dāng)時(shí),的二次函數(shù);當(dāng)時(shí),.測(cè)得部分?jǐn)?shù)據(jù)如表所示.

0

2

6

10

4

8

8

1)求關(guān)于的函數(shù)關(guān)系式;

2)求該新合金材料的含量為何值時(shí)產(chǎn)品的性能達(dá)到最佳.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某學(xué)校高二年級(jí)學(xué)生的物理成績(jī),從中抽取名學(xué)生的物理成績(jī)百分制作為樣本,按成績(jī)分成5組:,頻率分布直方圖如圖所示,成績(jī)落在中的人數(shù)為20

男生

女生

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

1的值;

2根據(jù)樣本估計(jì)總體的思想,估計(jì)該校高二學(xué)生物理成績(jī)的平均數(shù)和中位數(shù);

3成績(jī)?cè)?0分以上含80分為優(yōu)秀,樣本中成績(jī)落在中的男、女生人數(shù)比為1:2,成績(jī)落在中的男、女生人數(shù)比為3:2,完成列聯(lián)表,并判斷是否所有95%的把握認(rèn)為物理成績(jī)優(yōu)秀與性別有關(guān)

參考公式和數(shù)據(jù):

050

005

0025

0005

0455

3841

5024

7879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:函數(shù),其中

)若的極值點(diǎn),求的值;

)求的單調(diào)區(qū)間;

)若上的最大值是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;

3)若函數(shù)個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】代表紅球,代表藍(lán)球,代表黑球,由加法原理及乘法原理,從1個(gè)紅球和1個(gè)藍(lán)球中取出若干個(gè)球的所有取法可由的展開(kāi)式表示出來(lái),如:“1”表示一個(gè)球都不取、“”表示取出一個(gè)紅球,而“”用表示把紅球和藍(lán)球都取出來(lái).以此類(lèi)推,下列各式中,其展開(kāi)式可用來(lái)表示從5個(gè)有區(qū)別的紅球、5個(gè)無(wú)區(qū)別的藍(lán)球、5個(gè)無(wú)區(qū)別的黑球中取出若干個(gè)球,且所有的藍(lán)球都取出或都不取出的所有取法的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,當(dāng)時(shí),.數(shù)列滿足.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的通項(xiàng)公式;

3)若數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體中,為菱形,,平面,,.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】p:關(guān)于x的方程無(wú)解,q

1)若時(shí),“”為真命題,“”為假命題,求實(shí)數(shù)a的取值范圍.

2)當(dāng)命題“若p,則q”為真命題,“若q,則p”為假命題時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案