【題目】在平面直角坐標(biāo)系中,點,直線:,設(shè)圓的半徑為1,圓心在直線上.
(1)若圓心也在直線上,過點作圓的切線,求切線的方程;
(2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.
【答案】(1)或;(2).
【解析】
試題分析:(1)兩直線方程聯(lián)立可解得圓心坐標(biāo),又知圓的半徑為,可得圓的方程,根據(jù)點到直線距離公式,列方程可求得直線斜率,進而得切線方程;(2)根據(jù)圓的圓心在直線:上可設(shè)圓的方程為,由可得的軌跡方程為,若圓上存在點,使,只需兩圓有公共點即可.
試題解析:(1)由得圓心,
∵圓的半徑為1,
∴圓的方程為:,
顯然切線的斜率一定存在,設(shè)所求圓的切線方程為,即.
∴,
∴,∴或.
∴所求圓的切線方程為或.
(2)∵圓的圓心在直線:上,所以,設(shè)圓心為,
則圓的方程為.
又∵,
∴設(shè)為,則,整理得,設(shè)為圓.
所以點應(yīng)該既在圓上又在圓上,即圓和圓有交點,
∴,
由,得,
由,得.
綜上所述,的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若P(2,-1)為圓(x-1)2+y2=25的弦AB的中點,則直線AB的方程是 ( )
A. x-y-3=0 B. 2x+y-3=0 C. x+y-1=0 D. 2x-y-5=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某戰(zhàn)士在打靶中,連續(xù)射擊兩次,事件“至少有一次中靶”的對立事件是
A. 兩次都不中 B. 至多有一次中靶
C. 兩次都中靶 D. 只有一次中靶
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有紅、黃、藍三種顏色的球各5個,從中任取3個球.事件甲:3個球都不是紅球;事件乙:3個球不都是紅球;事件丙:3個球都是紅球;事件。3個球中至少有1個紅球,則下列選項中兩個事件互斥而不對立的是( )
A. 甲和乙 B. 甲和丙 C. 乙和丙 D. 乙和丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長方形中,,,為中點,將沿折起到△,所得四棱錐,如圖所示.
(1)若點為中點,求證:平面;
(2)求的體積;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在電腦上打下了一串黑白圓,如圖所示,○○○●●○○○●●○○○…,按這種規(guī)律往下排,那么第36個圓的顏色是( ).
A. 白色 B. 黑色 C. 白色可能性大 D. 黑色可能性大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從一批產(chǎn)品中取出三件產(chǎn)品,設(shè)A=“三件產(chǎn)品全不是次品”,B=“三件產(chǎn)品全是次品”,C=“三件產(chǎn)品不全是次品”,則下列結(jié)論正確的是( )
A. A與C互斥 B. B與C互斥
C. 任何兩個均互斥 D. 任何兩個均不互斥
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a=(cos α,1,sin α),b=(sin α,1,cos α),則向量a+b與a-b的夾角是( )
A. 90° B. 60° C. 30° D. 0°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com