一動圓與圓外切,與圓內(nèi)切,求動圓圓心的軌跡方程.

答案:略
解析:

解:圓,所以圓心(3,0),半徑,圓所以圓心(3,0),半徑.設(shè)動圓圓心為(x,y),半徑為r,依題意有,,所以,整理得,()


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+
3
2+y2=
225
16
的圓心為M,圓N:(x-
3
2+y2=的圓心為N,一動圓與圓M內(nèi)切,與圓N外切.
(Ⅰ)求動圓圓心P的軌跡方程;
(Ⅱ)在(Ⅰ)所求軌跡上是否存在一點(diǎn)Q,使得∠MQN為鈍角?若存在,求出點(diǎn)Q橫坐標(biāo)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

一動圓與圓外切,與圓內(nèi)切,求動圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年寧夏高三第五次月考理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

(Ⅰ)一動圓與圓相外切,與圓相內(nèi)切求動圓圓心的軌跡曲線E的方程,并說明它是什么曲線。

(Ⅱ)過點(diǎn)作一直線與曲線E交與A,B兩點(diǎn),若,求此時直線的方程。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省廈門市雙十中學(xué)高考考前熱身數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知圓M:(x+2+y2=的圓心為M,圓N:(x-2+y2=的圓心為N,一動圓與圓M內(nèi)切,與圓N外切.
(Ⅰ)求動圓圓心P的軌跡方程;
(Ⅱ)在(Ⅰ)所求軌跡上是否存在一點(diǎn)Q,使得∠MQN為鈍角?若存在,求出點(diǎn)Q橫坐標(biāo)的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案