參數(shù)方程(α為參數(shù))化成普通方程為    
【答案】分析:欲將參數(shù)方程(α為參數(shù))化成普通方程,只須消去參數(shù)即可,利用三角函數(shù)的同角公式中的平方關(guān)系即得.
解答:解:∵(α為參數(shù))
∴x2+(y-1)2
=cos2α+sin2α=1.
即:參數(shù)方程(α為參數(shù))化成普通方程為:
x2+(y-1)2=1.
故答案為:x2+(y-1)2=1.
點評:本小題主要考查參數(shù)方程的概念的應(yīng)用、圓的參數(shù)方程的概念、三角函數(shù)的同角公式等基礎(chǔ)知識,考查運(yùn)算求解能力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-4.坐標(biāo)系與參數(shù)方程)

已知曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),求直線被曲線截得的線段長度。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省懷化市黔陽一中高二(上)段考數(shù)學(xué)試卷(選修1-2、4-4)(解析版) 題型:選擇題

在參數(shù)方程(t為參數(shù))所表示的曲線上有B、C兩點,它們對應(yīng)的參數(shù)值分別為t1、t2,則線段BC的中點M對應(yīng)的參數(shù)值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省邢臺市寧晉二中高二(下)期末數(shù)學(xué)試卷(文科)(選修1-2、4-4)(解析版) 題型:選擇題

在參數(shù)方程(t為參數(shù))所表示的曲線上有B、C兩點,它們對應(yīng)的參數(shù)值分別為t1、t2,則線段BC的中點M對應(yīng)的參數(shù)值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年福建省三明市高三質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
設(shè)矩陣
(I)若a=2,b=3,求矩陣M的逆矩陣M-1
(II)若曲線C:x2+4xy+2y2=1在矩陣M的作用下變換成曲線C':x2-2y2=1,求a+b的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為(α為參數(shù)),點Q極坐標(biāo)為
(Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若關(guān)于x的不等式f(x)≥4的解集為A,求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年福建省三明市普通高中畢業(yè)班質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
設(shè)矩陣
(I)若a=2,b=3,求矩陣M的逆矩陣M-1;
(II)若曲線C:x2+4xy+2y2=1在矩陣M的作用下變換成曲線C':x2-2y2=1,求a+b的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為(α為參數(shù)),點Q極坐標(biāo)為
(Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若關(guān)于x的不等式f(x)≥4的解集為A,求集合A.

查看答案和解析>>

同步練習(xí)冊答案