已知函數(shù)在點處取得極小值-4,使其導數(shù)的取值范圍為,求:
(1)的解析式;
(2),求的最大值;

(1)
(2)m<2,;當m>3時,;當時,

解析試題分析:⑴根據(jù)題意,由于函數(shù)在點處取得極小值-4,使其導數(shù)的取值范圍為,可知的兩個根為1,3,結合韋達定理可知 
⑵由于,那么導數(shù)
,求,結合二次函數(shù)開口方向向下,以及對稱軸和定義域的關系分情況討論可知:
①當時,
②當m<2時,g(x)在[2,3]上單調遞減,
③當m>3時,g(x)在[2,3]上單調遞增,
考點:導數(shù)的運用
點評:主要是考查了導數(shù)的幾何意義,以及運用導數(shù)來求解函數(shù)最值的運用,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(Ⅰ)當a=1時,若曲線y=f(x)在點M (x0,f(x0))處的切線與曲線y=g(x)在點P (x0, g(x0))處的切線平行,求實數(shù)x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

己知函數(shù).
(I)求f(x)的極小值和極大值;
(II)當曲線y = f(x)的切線的斜率為負數(shù)時,求在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖象在點處的切線斜率為
(Ⅰ)求實數(shù)的值;
(Ⅱ)判斷方程根的個數(shù),證明你的結論;
(Ⅲ)探究:是否存在這樣的點,使得曲線在該點附近的左、右的兩部分分別位于曲線在該點處切線的兩側?若存在,求出點A的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求曲線y=x2,直線y=x,y=3x圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),當時,有極大值;
(1)求的值;
(2)求函數(shù)的極小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求的最小值;
(2)若直線對任意的都不是曲線的切線,求的取值范圍;
(3)設,求的最大值的解析式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調區(qū)間;
(Ⅱ)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;
(Ⅲ)設函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的單調區(qū)間;
(2)當時,判斷的大小,并說明理由;
(3)求證:當時,關于的方程:在區(qū)間上總有兩個不同的解.

查看答案和解析>>

同步練習冊答案