【題目】某投資人打算投資甲、乙兩個(gè)項(xiàng)目,根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為100%和50%,可能的最大虧損率分別為30%和10%,投資人計(jì)劃投資金額不超過(guò)10萬(wàn)元,要求確?赡艿馁Y金虧損不超過(guò)1.8萬(wàn)元,問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬(wàn)元,才能使可能的盈利最大?
【答案】投資人用4萬(wàn)元投資甲項(xiàng)目,6萬(wàn)元投資乙項(xiàng)目,取得的盈利最大為7萬(wàn)元
【解析】
本試題主要是考查了線(xiàn)性規(guī)劃的運(yùn)用。
根據(jù)已知條件設(shè)投資人分別用x萬(wàn)元、y萬(wàn)元投資甲、乙兩個(gè)項(xiàng)目,由題意:
,并且得到目標(biāo)函數(shù),
然后運(yùn)用平移法得到最值。
解:設(shè)投資人分別用x萬(wàn)元、y萬(wàn)元投資甲、乙兩個(gè)項(xiàng)目,由題意:
,目標(biāo)函數(shù),
上述不等式組表示的平面區(qū)域如圖所示,陰影部分(含邊界)即可行域。
作直線(xiàn),并作平行于直線(xiàn)的一組直線(xiàn),與可行域相交,其中有一條直線(xiàn)經(jīng)過(guò)可行域上的點(diǎn)M,且與直線(xiàn)的距離最大,其中M點(diǎn)是直線(xiàn)和直線(xiàn)的交點(diǎn),解方程組得,此時(shí)(萬(wàn)元),,當(dāng)時(shí),取得最大值。
答:投資人用4萬(wàn)元投資甲項(xiàng)目、6萬(wàn)元投資乙項(xiàng)目,才能在確保虧損不超過(guò)1.8 萬(wàn)元的前提下,使可能的盈利最大。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知多面體中,四邊形為矩形, , ,平面平面, 、分別為、的中點(diǎn).
()求證: .
()求證: 平面.
()若過(guò)的平面交于點(diǎn),交于,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中是真命題的是( )
①“若x2+y2≠0,則x,y不全為零”的否命題 ②“正多邊形都相似”的逆命題
③“若m>0,則x2+x-m=0有實(shí)根”的逆否命題④“若x-是有理數(shù),則x是
無(wú)理數(shù)”的逆否命題
A、①②③④ B、①③④ C、②③④ D、①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論不正確的是________(填序號(hào)).
①各個(gè)面都是三角形的幾何體是三棱錐;
②以三角形的一條邊所在直線(xiàn)為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐;
③棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則此棱錐可能是六棱錐;
④圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線(xiàn)都是母線(xiàn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為,則判斷框內(nèi)應(yīng)填入( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級(jí)),相對(duì)應(yīng)空氣質(zhì)量的七個(gè)類(lèi)別,指數(shù)越大,說(shuō)明污染的情況越嚴(yán)重,對(duì)人體危害越大.
指數(shù) | 級(jí)別 | 類(lèi)別 | 戶(hù)外活動(dòng)建議 |
Ⅰ | 優(yōu) | 可正常活動(dòng) | |
Ⅱ | 良 | ||
Ⅲ | 輕微污染 | 易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應(yīng)減少體積消耗和戶(hù)外活動(dòng). | |
輕度污染 | |||
Ⅳ | 中度污染 | 心臟病和肺病患者癥狀顯著加劇,運(yùn)動(dòng)耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應(yīng)減少體力活動(dòng). | |
中度重污染 | |||
Ⅴ | 重污染 | 健康人運(yùn)動(dòng)耐受力降低,由明顯強(qiáng)烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應(yīng)當(dāng)留在室內(nèi),避免體力消耗,一般人群應(yīng)盡量減少戶(hù)外活動(dòng). |
現(xiàn)統(tǒng)計(jì)邵陽(yáng)市市區(qū)2016年1月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.
(1)求這60天中屬輕度污染的天數(shù);
(2)求這60天空氣質(zhì)量指數(shù)的平均值;
(3)將頻率分布直方圖中的五組從左到右依次命名為第一組,第二組,…,第五組.從第一組和第五組中的所有天數(shù)中抽出兩天,記它們的空氣質(zhì)量指數(shù)分別為, ,求事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)作圓 的切線(xiàn), 為坐標(biāo)原點(diǎn),切點(diǎn)為,且.
(1)求的值;
(2)設(shè)是圓上位于第一象限內(nèi)的任意一點(diǎn),過(guò)點(diǎn)作圓的切線(xiàn),且交軸于點(diǎn),交y軸于點(diǎn),設(shè),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線(xiàn)段AC的中點(diǎn),E為線(xiàn)段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線(xiàn)方程;
(2)求函數(shù)的極值;
(3)若函數(shù)在區(qū)間上是增函數(shù),試確定的取值范圍.
【答案】(1);(2)當(dāng)時(shí), 恒成立, 不存在極值.當(dāng)時(shí),
有極小值無(wú)極大值.(3).
【解析】試題分析:
(1)當(dāng)時(shí),求得,得到的值,即可求解切線(xiàn)方程.
(2)由定義域?yàn)?/span>,求得,分和時(shí)分類(lèi)討論得出函數(shù)的單調(diào)區(qū)間,即可求解函數(shù)的極值.
(3)根據(jù)題意在上遞增,得對(duì)恒成立,進(jìn)而求解實(shí)數(shù)的取值范圍.
試題解析:
(1)當(dāng)時(shí), , ,
,又,∴切線(xiàn)方程為.
(2)定義域?yàn)?/span>, ,當(dāng)時(shí), 恒成立, 不存在極值.
當(dāng)時(shí),令,得,當(dāng)時(shí), ;當(dāng)時(shí), ,
所以當(dāng)時(shí), 有極小值無(wú)極大值.
(3)∵在上遞增,∴對(duì)恒成立,即恒成立,∴.
點(diǎn)睛:導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識(shí)點(diǎn),所以在歷屆高考中,對(duì)導(dǎo)數(shù)的應(yīng)用的考查都非常突出 ,本專(zhuān)題在高考中的命題方向及命題角度 從高考來(lái)看,對(duì)導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行: (1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系. (2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù). (3)考查數(shù)形結(jié)合思想的應(yīng)用.
【題型】解答題
【結(jié)束】
22
【題目】已知圓: 和點(diǎn), 是圓上任意一點(diǎn),線(xiàn)段的垂直平分線(xiàn)和相交于點(diǎn), 的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)點(diǎn)是曲線(xiàn)與軸正半軸的交點(diǎn),直線(xiàn)交于、兩點(diǎn),直線(xiàn), 的斜率分別是, ,若,求:①的值;②面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com