精英家教網 > 高中數學 > 題目詳情

已知P為拋物線y=數學公式,點P在x軸上的射影為M,點A的坐標是(2,0),則|PA|+|PM|的最小值是________.

-1
分析:求出拋物線焦點為F(0,1),準線為y=-1,延長PM交準線于N,連接PF,由拋物線定義得|PA|+|PM|=|PA|+|PF|-1,根據三角形兩邊之和大于第三邊,得當P、A、F三點共線時,|PA|+|PF|=|AF|為最小值,由此即可求得|PA|+|PM|的最小值.
解答:拋物線y=化成標準形式為x2=4y,
得它的焦點為F(0,1),準線為l:y=-1
延長PM交準線于N,連接PF,根據拋物線的定義,得
|PA|+|PM|=|PA|+|PN|-1=|PA|+|PF|-1
∵△PAF中,|PA|+|PF|>|AF|
∴當且僅當P、A、F三點共線時,|PA|+|PF|=|AF|為最小值
∵|AF|==
∴|PA|+|PM|的最小值為-1
故答案為:-1
點評:本題給出拋物線上動點,求該點到定點與拋物線準線的距離之和的最小值,著重考查了拋物線的定義和簡單幾何性質等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知P為拋物線y=2x2+1上的動點,定點A(0,-1),點M分
PA
所成的比為2,則點M的軌跡方程為( 。
A、y=6x2-
1
3
B、x=6y2-
1
3
C、y=3x2+
1
3
D、y=-3x2-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知P為拋物線y=
1
2
x2
上的動點,點P在x軸上的射影為M,點A的坐標是(6,
17
2
)
,則|PA|+|PM|的最小值是( 。
A、8
B、
19
2
C、10
D、
21
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知P為拋物線y=x2上的動點,定點A(a,0)關于P點的對稱點是Q,
(1)求點Q的軌跡方程;
(2)若(1)中的軌跡與拋物線y=x2交于B、C兩點,當AB⊥AC時,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知P為拋物線y=
1
4
x2上的動點
,點P在x軸上的射影為M,點A的坐標是(2,0),則|PA|+|PM|的最小值是
5
-1
5
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知P為拋物線y=x2上的動點,定點A(a,0)關于P點的對稱點是Q.

(1)求點Q的軌跡方程;

(2)若(1)中的軌跡與拋物線y=x2交于B、C兩點,當AB⊥AC時,求a的值.

查看答案和解析>>

同步練習冊答案