【題目】“酒后駕車”和“醉酒駕車”,其檢測標(biāo)準(zhǔn)是駕駛?cè)藛T血液中的酒精含量Q(簡稱血酒含量,單位是毫克/100毫升),當(dāng)20≤Q≤80時,為酒后駕車;當(dāng)Q>80時,為醉酒駕車.某市交通管理部門于某天晚上8點至11點設(shè)點進行一次攔查行動,共依法查出了60名飲酒后違法駕駛機動車者,如圖為這60名駕駛員抽血檢測后所得結(jié)果畫出的頻率分布直方圖(其中Q≥140的人數(shù)計入120≤Q<140人數(shù)之內(nèi)).
(1)求此次攔查中醉酒駕車的人數(shù);
(2)從違法駕車的60人中按酒后駕車和醉酒駕車?yán)梅謱映闃映槿?人做樣本進行研究,再從抽取的8人中任取3人,求3人中含有醉酒駕車人數(shù)X的分布列和數(shù)學(xué)期望.
【答案】(1)15人;(2)漸近線.
【解析】試題分析:(1)由頻率分布直方圖得小長方形面積等于對應(yīng)頻率,再根據(jù)頻數(shù)等于總數(shù)乘以頻率得結(jié)果(2)先按分層抽樣得含有醉酒駕車者人數(shù),再確定隨機變量,利用組合數(shù)逐個求對應(yīng)概率,列表可得分布列,最后根據(jù)數(shù)學(xué)期望公式求期望
試題解析:(1)由已知得,(0.003 2+0.004 3+0.005 0)×20=0.25,0.25×60=15,所以此次攔查中醉酒駕車的人數(shù)為15人.
(2)易知利用分層抽樣抽取8人中含有醉酒駕車者為2人,所以X的所有可能取值為0,1,2.
P(X=0)==,P(X=1)==,
P(X=2)==,
X的分布列為
E(X)=0×+1×+2×=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某種水箱用的“浮球”,是由兩個半球和一個圓柱筒組成的.已知半球的直徑是6 cm,圓柱筒高為2 cm.
(1)這種“浮球”的體積是多少cm3(結(jié)果精確到0.1)?
(2)要在2 500個這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知cos2B+cosB=1-cosAcosC.
(1)求證:a,b,c成等比數(shù)列;
(2)若b=2,求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列命題中:
①若向量a,b共線,則向量a,b所在的直線平行;
②若向量a,b所在的直線為異面直線,則向量a,b一定不共面;
③若三個向量a,b,c兩兩共面,則向量a,b,c共面;
④已知空間的三個向量,則對于空間的任意一個向量,總存在實數(shù)x,y,z,使得。
正確命題的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:x2+(y-2)2=1,Q是x軸上的動點,QA,QB分別切圓M于A,B兩點。
(1)若Q(1,0),求切線QA,QB的方程;
(2)求四邊形QAMB面積的最小值;
(3)若|AB|=,求直線MQ的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a為實數(shù)).
(1) 若函數(shù)在處的切線與直線平行,求實數(shù)a的值;
(2) 若,求函數(shù)在區(qū)間上的值域;
(3) 若函數(shù)在區(qū)間上是增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年一交警統(tǒng)計了某段路過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
車速 | |||||
事故次數(shù) |
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測2017年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達到時,可能發(fā)生的交通事故次數(shù).
(參考數(shù)據(jù):)
[參考公式:]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:
先由命題解得;命題得,
(1)當(dāng),得命題,再由為真,得真且真,即可求解的取值范圍.
(2)由是的充分不必要條件,則是的充分必要條件,根據(jù)則 ,即可求解實數(shù)的取值范圍.
試題解析:
命題:由題得,又,解得;
命題: ,解得.
(1)若,命題為真時, ,
當(dāng)為真,則真且真,
∴解得的取值范圍是.
(2)是的充分不必要條件,則是的充分必要條件,
設(shè), ,則 ;
∴∴實數(shù)的取值范圍是.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線頂點在原點,焦點在軸上,又知此拋物線上一點到焦點的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點、,且中點橫坐標(biāo)為2,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集為[﹣5,﹣1],求實數(shù)a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com