【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,過(guò)點(diǎn)的直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,記直線與曲線分別交于兩點(diǎn).
(1)求曲線和的直角坐標(biāo)方程;
(2)證明:成等比數(shù)列.
【答案】(1), .(2)見(jiàn)解析.
【解析】
(1)曲線C的極坐標(biāo)方程左右兩邊同乘 ,再利用 可求其直角坐標(biāo)方程;消參可求直線的普通方程;
(2)把直線的參數(shù)方程和曲線C的直角坐標(biāo)方程聯(lián)立,利用韋達(dá)定理分別表示 ,利用等比中項(xiàng)法即可證明。
(1)由,得 ,
所以曲線的直角坐標(biāo)方程為,
由 ,消去參數(shù),得直線的普通方程為.
(2)證明:將直線的參數(shù)方程代入中,得.
設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,則有,,
所以.
因?yàn)?/span>,
所以,,成等比數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的單調(diào)減函數(shù)是奇函數(shù),當(dāng)時(shí),.
(Ⅰ)求的值;
(Ⅱ)求的解析式;
(Ⅲ)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中,前項(xiàng)和為,若對(duì)任意的,均有(是常數(shù),且)成立,則稱(chēng)數(shù)列為“數(shù)列”.
(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項(xiàng)和;
(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問(wèn):是否存在數(shù)列,使得對(duì)一切,恒成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請(qǐng)說(shuō)明理由;
(3)若數(shù)列為“數(shù)列”,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生將語(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理、化學(xué)、生物6科的作業(yè)安排在周六、周日完成,要求每天至少完成兩科,且數(shù)學(xué),物理作業(yè)不在同一天完成,則完成作業(yè)的不同順序種數(shù)為( )
A. 600B. 812C. 1200D. 1632
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】盒子中裝有四張大小形狀均相同的卡片,卡片上分別標(biāo)有數(shù)其中是虛數(shù)單位.稱(chēng)“從盒中隨機(jī)抽取一張,記下卡片上的數(shù)后并放回”為一次試驗(yàn)(設(shè)每次試驗(yàn)的結(jié)果互不影響).
(1)求事件 “在一次試驗(yàn)中,得到的數(shù)為虛數(shù)”的概率與事件 “在四次試驗(yàn)中,
至少有兩次得到虛數(shù)” 的概率;
(2)在兩次試驗(yàn)中,記兩次得到的數(shù)分別為,求隨機(jī)變量的分布列與數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由中央電視臺(tái)綜合頻道()和唯眾傳媒聯(lián)合制作的《開(kāi)講啦》是中國(guó)首檔青年電視公開(kāi)課,每期節(jié)目由一位知名人士講述自己的故事,分享他們對(duì)于生活和生命的感悟,給予中國(guó)青年現(xiàn)實(shí)的討論和心靈的滋養(yǎng),討論青年們的人生問(wèn)題,同時(shí)也在討論青春中國(guó)的社會(huì)問(wèn)題,受到青年觀眾的喜愛(ài),為了了解觀眾對(duì)節(jié)目的喜愛(ài)程度,電視臺(tái)隨機(jī)調(diào)查了A、B兩個(gè)地區(qū)共100名觀眾,得到如下的列聯(lián)表:
非常滿(mǎn)意 | 滿(mǎn)意 | 合計(jì) | |
A | 30 | y | |
B | x | z | |
合計(jì) |
已知在被調(diào)查的100名觀眾中隨機(jī)抽取1名,該觀眾是地區(qū)當(dāng)中“非常滿(mǎn)意”的觀眾的概率為0.35,且.請(qǐng)完成上述表格,并根據(jù)表格判斷是否有95%的把握認(rèn)為觀眾的滿(mǎn)意程度與所在地區(qū)有關(guān)系?
附:參考公式:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)生物死亡后,它機(jī)體內(nèi)原有的碳14會(huì)按確定的規(guī)律衰減.按照慣例,人們將每克組織的碳14含量作為一個(gè)單位大約每經(jīng)過(guò)5730年,一個(gè)單位的碳14衰減為原來(lái)的一半,這個(gè)時(shí)間稱(chēng)為“半衰期”.當(dāng)死亡生物組織內(nèi)的碳14的含量不足死亡前的千分之一時(shí),用一般的放射性探測(cè)器就測(cè)不到碳14了.如果用一般的放射性探測(cè)器不能測(cè)到碳14,那么死亡生物組織內(nèi)的碳14至少經(jīng)過(guò)了_____個(gè)“半衰期”.(提示:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為, 分別是的中點(diǎn),點(diǎn)在棱
上, ().
(Ⅰ)三棱錐的體積分別為,當(dāng)為何值時(shí), 最大?最大值為多少?
(Ⅱ)若平面,證明:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①是一棟新農(nóng)村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構(gòu)成,其中前后兩坡屋面ABFE和CDEF是全等的等腰梯形,左右兩坡屋面EAD和FBC是全等的三角形.點(diǎn)F在平面ABCD和BC上的射影分別為H,M.已知HM 5 m,BC 10 m,梯形ABFE的面積是△FBC面積的2.2倍.設(shè)∠FMH .
(1)求屋頂面積S關(guān)于的函數(shù)關(guān)系式;
(2)已知上部屋頂造價(jià)與屋頂面積成正比,比例系數(shù)為k(k為正的常數(shù)),下部主體造價(jià)與其 高度成正比,比例系數(shù)為16 k.現(xiàn)欲造一棟上、下總高度為6 m的別墅,試問(wèn):當(dāng)為何值時(shí),總造價(jià)最低?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com