3.在數(shù)列{an}中,a1=1,an+2+(-1)nan=1,則數(shù)列{an}的前100項(xiàng)之和為1300.

分析 a1=1,an+2+(-1)nan=1,對(duì)n分類討論可得:a2k+2+a2k=1,a2k+1-a2k-1=1,k∈N*.利用分組求和、等差數(shù)列的求和公式即可得出.

解答 解:∵a1=1,an+2+(-1)nan=1,
∴n=2k為偶數(shù)時(shí),a2k+2+a2k=1;n=2k-1為奇數(shù)時(shí),a2k+1-a2k-1=1,k∈N*
∴數(shù)列{an}的奇數(shù)項(xiàng)成等差數(shù)列,公差為1,首項(xiàng)為1.
∴數(shù)列{an}的前100項(xiàng)之和=(a1+a3+…+a99)+[(a2+a4)+…+(a98+a100)]
=50×1+$\frac{50×49}{2}$×1+25
=1300.
故答案為:1300.

點(diǎn)評(píng) 本題考查了分組求和、等差數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.《張丘建算經(jīng)》卷上第22題為“今有女善織,日益功疾,初日織五尺,今一月日織九匹三丈.”其意思為:現(xiàn)有一善于織布的女子,從第2天開始,每天比前一天多織相同量的布,第1天織了5尺布,現(xiàn)在一月(按30天計(jì)算)共織390尺布,記該女子一月中的第n天所織布的尺數(shù)為an,則a14+a15+a16+a17的值為( 。
A.55B.52C.39D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)y=|x+1|+$\sqrt{{x}^{2}-4x+4}$的值域?yàn)閇3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an} 滿足a1=2,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$(n∈N*),則a1a2a3…a2010 的值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知向量$\vec a$=(-2,x+1),$\vec b$=(3,x+2),若$\vec a$⊥$\vec b$,則實(shí)數(shù)x=-4或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x|2x≤4,x∈R},B={x|$\sqrt{x}$≤2,x∈Z},則A∩B=( 。
A.(0,2)B.[0,2]C.{0,1,2}D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,若∠A:∠B=1:2,a:b=1:$\sqrt{3}$,則∠B為( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間(-∞,0]上是減函數(shù),判斷f(x)在(-∞,+∞)上的單調(diào)性,并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知定義在R上的函數(shù)y=f(x-1)是偶函數(shù),且x≤-1時(shí),y=f(x)是減函數(shù),則滿足不等式f(2x-1)>f(2)的x的解集為( 。
A.(-∞,-$\frac{3}{2}$)∪($\frac{3}{2}$,+∞)B.(-∞,0)∪($\frac{3}{2}$,+∞)C.(-∞,0)∪(1,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案