7.對具有線性相關關系的變量x,y有一組觀測數(shù)據(jù)(xi,yi)(i=1,2,3,…,n),觀測數(shù)據(jù)均在回歸直線方程$y=\frac{1}{3}x+2$上,則該組數(shù)據(jù)的殘差平方和的值為( 。
A.0B.$\frac{1}{3}$C.1D.2

分析 根據(jù)殘差平方和越小的模型,其擬合的效果越好,
當觀測數(shù)據(jù)均在回歸直線方程上時,殘差平方和為0.

解答 解:由于殘差平方和越小的模型,其擬合的效果越好,
對于具有線性相關關系的變量x,y有一組觀測數(shù)據(jù)均在回歸直線方程$y=\frac{1}{3}x+2$上,
則該組數(shù)據(jù)的殘差平方和的值為0.
故選:A.

點評 本題考查了殘差平方和與回歸直線方程的應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.在平面直角坐標系xOy中,拋物線C:x2=2py(p>0)的焦點為F,過F的直線l交C于A,B兩點,交x軸于點D,B到x軸的距離比|BF|小1.
(Ⅰ)求C的方程;
(Ⅱ)若S△BOF=S△AOD,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=acosx+bx2+2(a∈R,b∈R),f'(x)為f(x)的導函數(shù),則f(2016)-f(-2016)+f'(2017)+f'(-2017)=( 。
A.4034B.4032C.4D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設拋物線C1:y2=8x的準線與x軸交于點F1,焦點為F2.以F1,F(xiàn)2為焦點,離心率為$\frac{{\sqrt{2}}}{2}$的橢圓記為C2
(Ⅰ)求橢圓C2的方程;
(Ⅱ)設N(0,-2),過點P(1,2)作直線l,交橢圓C2于異于N的A、B兩點.
(。┤糁本NA、NB的斜率分別為k1、k2,證明:k1+k2為定值.
(ⅱ)以B為圓心,以BF2為半徑作⊙B,是否存在定⊙M,使得⊙B與⊙M恒相切?若存在,求出⊙M的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知x(3x-2)4=a0x+a1x2+a2x3+a3x4+a4x5,則a0+2a1+3a2+4a3+5a4=(  )
A.-257B.13C.1855D.-1855

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知$\overrightarrow{a}$=(1,2,-2),則與$\overrightarrow{a}$共線的單位向量坐標為$({\frac{1}{3},\frac{2}{3},-\frac{2}{3}})$或$({-\frac{1}{3},-\frac{2}{3},\frac{2}{3}})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需要了解年宣傳費x(單位:千元)對年銷量y(單位:)和利潤z(單位:千元)的影響,對近8年的宣傳費xi(i=1,2,…,8)和年銷售量yi數(shù)據(jù)進行了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

$\overline{x}$$\overline{y}$$\overline{w}$ $\sum_{i=1}^{n}$(xi-$\overline{x}$)2$\sum_{i=1}^{n}$(wi-$\overline{w}$)2$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{n}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(1)根據(jù)散點圖判斷,$y=a+bx,y=c+d\sqrt{x}$哪一個更適合作為年銷售量y關于年宣傳費x的回歸方程類型(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結果及表中數(shù)據(jù),建立y關于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤z與x,y的關系為z=0.2y-x,根據(jù)(2)的結果回答下列問題;
①當年宣傳費x=90時,年銷售量及年利潤的預報值是多少?
②當年宣傳費x為何值時,年利潤的預報值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸線v=α+βu的斜率和截距的最小二乘估計分別為:
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({μ}_{i}-\overline{μ})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({μ}_{i}-\overline{μ})^{2}}$,$\widehat{a}$=$\overline{v}$-$\widehat{β}$$\overline{μ}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在極坐標系Ox中,Rt△OPQ的頂點O、P、Q按逆時針方向排列,∠OPQ=$\frac{π}{2}$,∠POQ=$\frac{π}{3}$,點P在曲線C1:ρ=2cosθ上運動(異于極點O).
(1)當點P的極坐標為$({\sqrt{2},\frac{π}{4}})$,求點Q的極坐標;
(2)判斷點Q的軌跡C2是何種曲線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖,在△ABC中,cos∠ABC=$\frac{1}{3}$,AB=2,點D在線段AC上,且AD=2DC,BD=$\frac{{4\sqrt{3}}}{3}$,則△ABC的面積為2$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案