拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)的連線交于第一象限的點(diǎn),若在點(diǎn)處的切線平行于的一條漸近線,則(      )
A.B.C.D.
D
畫(huà)圖可知被在點(diǎn)M處的切線平行的漸近線方程應(yīng)為,設(shè),則利用求導(dǎo)得又點(diǎn)共線,即點(diǎn)共線,所以,解得所以
【考點(diǎn)定位】本題考查了拋物線和雙曲線的概念、性質(zhì)和導(dǎo)數(shù)的意義,進(jìn)一步考查了運(yùn)算求解能力.這一方程形式為導(dǎo)數(shù)法研究提供了方便,本題“切線”這一信號(hào)更加決定了“求導(dǎo)”是“必經(jīng)之路”.根據(jù)三點(diǎn)共線的斜率性質(zhì)構(gòu)造方程,從而確定拋物線方程形式,此外還要體會(huì)這種設(shè)點(diǎn)的意義所在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線的焦點(diǎn)且與直線平行的直線方程是(  。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是拋物線上任意兩點(diǎn)(非原點(diǎn)),當(dāng)最小時(shí),所在兩條直線的斜率之積的值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圓心在拋物線上,且與該拋物線的準(zhǔn)線和軸都相切的圓的方程是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線,過(guò)軸上一點(diǎn)的直線與拋物線交于點(diǎn)兩點(diǎn)。
證明,存在唯一一點(diǎn),使得為常數(shù),并確定點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(1) 求拋物線的方程;
(2) 當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),求直線的方程;
(3) 當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若直線與拋物線交于、兩點(diǎn),則線段的中點(diǎn)坐標(biāo)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F(1,0),直線與拋物線C相交于A,B兩點(diǎn).若AB的中點(diǎn)為(2,2),則直線的方程為_(kāi)____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線y2=4x的焦點(diǎn)到準(zhǔn)線的距離是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案