方程lgx+x=0在下列的哪個(gè)區(qū)間內(nèi)有實(shí)數(shù)解(  )
A、[-10,-
1
10
]
B、(-∞,0]
C、[1,10]
D、[
1
10
,1]
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)=lgx+x,利用函數(shù)零點(diǎn)存在判定定理即可得出.
解答: 解:令f(x)=lgx+x,
則f(1)=1>0,f(
1
10
)
=-1+
1
10
0,
f(1)•f(
1
10
)<0

因此函數(shù)f(x)在區(qū)間[
1
10
,1]
內(nèi)有零點(diǎn).
即方程lgx+x=0在此區(qū)間內(nèi)有實(shí)數(shù)解.
故選:D.
點(diǎn)評(píng):本題考查了函數(shù)零點(diǎn)存在判定定理,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

袋內(nèi)裝有6個(gè)球,每個(gè)球上都記有從1到6的一個(gè)號(hào)碼,設(shè)號(hào)碼為n的重n2-6n+12克,這些求等可能地從袋里取出(不受重量、號(hào)碼的影響)
(1)如果任意取出1球,求其重量大于號(hào)碼數(shù)的概率;
(2)如果不放回地任意取出2球,求它們重量相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x.
(1)求函數(shù)f(x)的極值;
(2)已知f(x)在[t,t+2]上是增函數(shù),求t的取值范圍;
(3)設(shè)f(x)在[t,t+2]上最大值M與最小值m之差為g(t),試求g(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
f(10+x)  (x<0)
(
1
2
)
x
  (0≤x<2)
f(x-2)  (x≥2)
,則f(-2011)的值為( 。
A、2
B、8
C、
1
2
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2-lnx,其中a>
1
2

(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)f(x)的最小值為g(a),證明函數(shù)g(x)沒有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x-
a
x
的定義域?yàn)椋?,1](a為實(shí)數(shù)).
(1)當(dāng)a=1時(shí),求函數(shù)y=f(x)的值域;
(2)若函數(shù)y=f(x)在定義域上是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀下列程序,并指出當(dāng)a=3,b=-5時(shí)的計(jì)算結(jié)果( 。
A、a=-1,b=4
B、a=0.5,b=-1.25
C、a=3,b=-5
D、a=-0.5,b=1.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U是全集,集合A,B滿足A?B,則下列式子中不成立的是(  )
A、A∪B=B
B、A∪(∁UB)=U
C、(∁UA)∪B=U
D、A∩B=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+10x+1,則函數(shù)f(x+2010)的最小值及對(duì)稱軸方程分別為(  )
A、-24,-2015
B、24,x=-2015
C、24,x=2005
D、-24,x=-2015

查看答案和解析>>

同步練習(xí)冊(cè)答案