(本小題滿分12分)已知函數(shù)。
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若恒成立,試確定實(shí)數(shù)k的取值范圍;
(Ⅲ)證明:
(I)當(dāng)時(shí),增區(qū)間;當(dāng)時(shí),增區(qū)間減區(qū)間(Ⅱ)(Ⅲ)當(dāng)時(shí)有恒成立,恒成立,即上恒成立,令,則,即,從而,所以有成立

試題分析:(I)函數(shù)
當(dāng)時(shí),則上是增函數(shù)
當(dāng)時(shí),若時(shí)有
時(shí)有上是增函數(shù),
上是減函數(shù)               ………(4分)
(Ⅱ)由(I)知,時(shí)遞增,
不成立,故  
又由(I)知,要使恒成立,
即可。 由………(8分)
(Ⅲ)由(Ⅱ)知,當(dāng)時(shí)有恒成立,
上是減函數(shù),,
恒成立,
上恒成立 !10分)
,則,即
從而,
成立……(14分)
點(diǎn)評(píng):第一問(wèn)中求單調(diào)區(qū)間要對(duì)參數(shù)k分情況討論,第二問(wèn)將不等式恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)最大值問(wèn)題,這是函數(shù)與不等式間常用的轉(zhuǎn)化方法,第三問(wèn)難度較大需要構(gòu)造函數(shù),學(xué)生不易掌握
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

建造一條防洪堤,其斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其斷面面積為平方米,為了使堤的上面與兩側(cè)面的水泥用料最省,則斷面的外周長(zhǎng)(梯形的上底線段與兩腰長(zhǎng)的和)要最。

(1)求外周長(zhǎng)的最小值,并求外周長(zhǎng)最小時(shí)防洪堤高h(yuǎn)為多少米?
(2)如防洪堤的高限制在的范圍內(nèi),外周長(zhǎng)最小為多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

當(dāng)函數(shù)(>0)取最小值時(shí)相應(yīng)的的值等于     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若定義在R上的偶函數(shù)滿足,且當(dāng)時(shí),則方程的解個(gè)數(shù)是                   (   )
A.0個(gè)B.2個(gè)C.4個(gè)D.6個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若存在實(shí)數(shù)x∈[2,4],使x2-2x+5-m<0成立,則m的取值范圍為
A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(-∞,13)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)中,常數(shù)那么的解集為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

鐵礦石的含鐵率,冶煉每萬(wàn)噸鐵礦石的的排放量及每萬(wàn)噸鐵礦石的價(jià)格如下表:
 

(萬(wàn)噸)
(百萬(wàn)元)

50%
1
3

70%
0.5
6
某冶煉廠至少要生產(chǎn)1.9(萬(wàn)噸)鐵,若要求的排放量不超過(guò)(萬(wàn)噸),則購(gòu)買鐵礦石的最少費(fèi)用為 (百萬(wàn)元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)上海某玩具廠生產(chǎn)套世博吉祥物“海寶”所需成本費(fèi)用為元,且,而每套“海寶”售出的價(jià)格為元,其中 
(1)問(wèn):該玩具廠生產(chǎn)多少套“海寶”時(shí),使得每套所需成本費(fèi)用最少?
(2)若生產(chǎn)出的“海寶”能全部售出,且當(dāng)產(chǎn)量為150套時(shí)利潤(rùn)最大,此時(shí)每套價(jià)格為30元,求的值.(利潤(rùn) = 銷售收入-成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案