已知F1,F(xiàn)2為橢圓x2+
y2
2
=1
上的兩個焦點,A,B是過焦點F1的一條動弦,則△ABF2的面積的最大值為(  )
A.
2
2
B.
2
C.1D.2
2
∵橢圓x2+
y2
2
=1
,
∴F1(0,1),F(xiàn)2(0,-1),
設A(x1,y1),B(x2,y2),AB方程為y=kx+1,
代入橢圓方程,整理可得(2+k2)x2+2kx-1=0,
∴x1+x2=
-2k
2+k2
,x1x2=-
1
2+k2
,
∴△ABF2的面積為S=
1
2
|F1F2||x1-x2|=
(
-2k
2+k2
)2+
4
2+k2
=
8(k2+1)
(2+k2)2
,
令t=k2+1(t≥1),則S=
8t
(t+1)2
=
8
(
1
t
+
1
t2
)2
2
,當且僅當t=1,即k=0時取等號,
∴△ABF2的面積的最大值為
2

故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

矩形ABCD的中心在坐標原點,邊AB與x軸平行,AB=8,BC=6.E,F(xiàn),G,H分別是矩形四條邊的中點,R,S,T是線段OF的四等分點,R′,S′,T′是線段CF的四等分點.設直線ER與GR′,ES與GS′,ET與GT′的交點依次為L,M,N.
(1)求以HF為長軸,以EG為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點L,M,N都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設線段OF的n(n∈N+,n≥2)等分點從左向右依次為Ri(i=1,2,…,n-1),線段CF的n等分點從上向下依次為Ti(i=1,2,…,n-1),那么直線ERi(i=1,2,…,n-1)與哪條直線的交點一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設雙曲線C的焦點在y軸上,離心率為
2
,其一個頂點的坐標是(0,1).
(Ⅰ)求雙曲線C的標準方程;
(Ⅱ)若直線l與該雙曲線交于A、B兩點,且A、B的中點為(2,3),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知A(-3,0),B、C兩點分別在y軸和x軸上運動,并且滿足
AB
BQ
=0
,
BC
=
1
2
CQ

(1)求動點Q的軌跡方程;
(2)設過點A的直線與Q的軌跡交于E、F兩點,A′(3,0),求直線A′E、A′F的斜率之和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直角坐標平面內(nèi)點A(x,y)到點F1(-1,0)與點F2(1,0)的距離之和為4.
(1)試求點A的軌跡M的方程;
(2)若斜率為
1
2
的直線l與軌跡M交于C、D兩點,點P(1,
3
2
)
為軌跡M上一點,記直線PC的斜率為k1,直線PD的斜率為k2,試問:k1+k2是否為定值?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,雙曲線
x2
a2
-
y2
b2
=1
的兩條漸近線為
l1,l2,過橢圓C的右焦點F作直線l,使l⊥l1,又l與l2交于P,設l與橢圓C的兩個交點由上至下依次為A、B(如圖).
(1)當l1與l2的夾角為60°,且△POF的面積為
3
2
時,求橢圓C的方程;
(2)當
FA
AP
時,求當λ取到最大值時橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為F,上頂點為A,過點A與AF垂直的直線分別交橢圓C與x軸正半軸于點P、Q,且
AP
=
8
5
PQ

(1)求橢圓C的離心率;
(2)若過A、Q、F三點的圓恰好與直線l:x+
3
y+3=0相切,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在原點,一個焦點為F(0,
2
)
,且長軸長與短軸長的比為
2
:1

(1)求橢圓C的方程;
(2)若橢圓C上在第一象限內(nèi)的一點P的橫坐標為1,過點P作傾斜角互補的兩條不同的直線PA,PB分別交橢圓C于另外兩點A,B.求證:直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知O為坐標原點,F(xiàn)為橢圓C:x2+
y2
2
=1
在y軸正半軸上的焦點,過F且斜率為-
2
的直線l與C交于A、B兩點,點P滿足
OA
+
OB
+
OP
=
0

(Ⅰ)證明:點P在C上;
(Ⅱ)設點P關(guān)于點O的對稱點為Q,證明:A、P、B、Q四點在同一圓上.

查看答案和解析>>

同步練習冊答案