【題目】已知函數(shù),

1)討論的單調(diào)性;

2)若有兩個(gè)極值點(diǎn),求的最大值.

【答案】(1)分類討論,詳見解析;(2).

【解析】

1)求出導(dǎo)函數(shù),根據(jù)二次函數(shù)的的關(guān)系來分類討論函數(shù)的單調(diào)性,并注意一元二次方程根的正負(fù)與定義域的關(guān)系;

2)由是兩個(gè)極值點(diǎn)得到對(duì)應(yīng)的韋達(dá)定理形式,然后利用條件將轉(zhuǎn)變?yōu)殛P(guān)于某一變量的新函數(shù),分析新函數(shù)的單調(diào)性從而確定出新函數(shù)的最大值即的最大值.

1,,

當(dāng),即時(shí),,此時(shí)上單調(diào)遞增;

當(dāng)時(shí),有兩個(gè)負(fù)根,此時(shí)上單調(diào)遞增;

當(dāng)時(shí),有兩個(gè)正根,分別為,

此時(shí),上單調(diào)遞增,在上單調(diào)遞減.

綜上可得:時(shí),上單調(diào)遞增,

時(shí),上單調(diào)遞增,在上單調(diào)遞減.

2)由(1)可得,,

,,

,,∴,,

,則

當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞增,在單調(diào)遞減

的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠預(yù)購軟件服務(wù),有如下兩種方案:

方案一:軟件服務(wù)公司每日收取工廠60元,對(duì)于提供的軟件服務(wù)每次10元;

方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過15次,不另外收費(fèi),若超過15次,超過部分的軟件服務(wù)每次收費(fèi)標(biāo)準(zhǔn)為20元.

(1)設(shè)日收費(fèi)為元,每天軟件服務(wù)的次數(shù)為,試寫出兩種方案中的函數(shù)關(guān)系式;

(2)該工廠對(duì)過去100天的軟件服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),得到如圖所示的條形圖,依據(jù)該統(tǒng)計(jì)數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個(gè)方案中選擇一個(gè),哪個(gè)方案更合適?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知定圓,定直線的一條動(dòng)直線與直線相交于,與圓相交于兩點(diǎn),中點(diǎn).

1)當(dāng)垂直時(shí),求證:過圓心;

2)當(dāng)時(shí),求直線的方程;

3)設(shè),試問是否為定值,若為定值,請(qǐng)求出的值;若不為定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,為線段上一點(diǎn).

(1)若,則在線段上是否存在點(diǎn),使得平面?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說明理由

(2)己知,若異面直線角,二而角的余弦值為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形的直角梯形,,,為線段的中點(diǎn),平面,為線段上一點(diǎn)(不與端點(diǎn)重合).

(Ⅰ)若

(i)求證:平面;

(ii)求直線與平面所成的角的大。

(Ⅱ)否存在實(shí)數(shù)滿足,使得平面與平面所成的銳角為,若存在,確定的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,是邊長(zhǎng)為的正三角形,點(diǎn)為正方形的中心,為線段的中點(diǎn),.則下列結(jié)論正確的是(

A.平面平面

B.直線是異面直線

C.線段的長(zhǎng)度相等

D.直線與平面所成的角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,多面體ABCDEF中,已知平面ABCD是邊長(zhǎng)為3的正方形,,EF到平面ABCD的距離為2,則該多面體的體積V為(

A.B.5C.6D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為,過點(diǎn)的直線的參數(shù)方程為為參數(shù)).

(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)若直線與曲線交于、兩點(diǎn),求的值,并求定點(diǎn)兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某項(xiàng)競(jìng)賽分為初賽、復(fù)賽、決賽三個(gè)階段進(jìn)行,每個(gè)階段選手要回答一個(gè)問題.規(guī)定正確回答問題者進(jìn)入下一階段競(jìng)賽,否則即遭淘汰.已知某選手通過初賽、復(fù)賽、決賽的概率分別是且各階段通過與否相互獨(dú)立.

(1)求該選手在復(fù)賽階段被淘汰的概率;

(2)設(shè)該選手在競(jìng)賽中回答問題的個(gè)數(shù)為ξ,求ξ的分布列與均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案