如圖,橢圓,a,b為常數(shù)),動(dòng)圓。點(diǎn)分別為的左,右頂點(diǎn),相交于A,B,C,D四點(diǎn)。

   (Ⅰ)求直線與直線交點(diǎn)M的軌跡方程;

   (Ⅱ)設(shè)動(dòng)圓相交于四點(diǎn),其中

。若矩形與矩形的面積相等,證明:為定值。

 

【答案】

(1)   (2)

【解析】(1)設(shè),又知

則直線的方程為  ①

直線的方程為    ②

由①②得        ③

由點(diǎn)在橢圓上,故,從而代入③得

 

(2)證明:設(shè),由矩形ABCD與矩形的面積相等,得

因?yàn)辄c(diǎn)A,均在橢圓上,所以,

,知,所以.從而

因此為定值

考點(diǎn)定位:本大題主要考查橢圓、圓、直線的標(biāo)準(zhǔn)方程的求法以及直線與橢圓、圓的位置關(guān)系,突出解析幾何的基本思想和方法的考查:如數(shù)形結(jié)合思想、坐標(biāo)化方法等

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓C:(ab>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為.不過(guò)原點(diǎn)O的直線l與C相交于AB兩點(diǎn),且線段AB被直線OP平分.

(Ⅰ)求橢圓C的方程;

(Ⅱ) 求ABP的面積取最大時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年陜西省延安市實(shí)驗(yàn)中學(xué)高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與過(guò)點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年四川省南充市高考數(shù)學(xué)零診試卷(文科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與過(guò)點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年浙江省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,橢圓=1(a>b>0)與過(guò)點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(浙江卷解析版) 題型:解答題

如圖,橢圓C:(a>b>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為.不過(guò)原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分.

(Ⅰ)求橢圓C的方程;

(Ⅱ) 求ABP的面積取最大時(shí)直線l的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案