【題目】函數(shù)f(x)=|2x﹣1|,定義f1(x)=x,fn+1(x)=f(fn(x)),已知函數(shù)g(x)=fm(x)﹣x有8個(gè)零點(diǎn),則m的值為( )
A.8
B.4
C.3
D.2
【答案】B
【解析】解:(I)當(dāng)x∈(﹣∞, ]時(shí),f2(x)=f(f1(x))=|2x﹣1|=1﹣2x,
①當(dāng)x∈(﹣∞, ]時(shí),f3(x)=|1﹣4x|=1﹣4x,
當(dāng)x∈(﹣∞, ]時(shí),f4(x)=|1﹣8x|=1﹣8x,
此時(shí),g(x)=f4(x)﹣x=1﹣9x,有零點(diǎn)x1= .
當(dāng)x∈( , ]時(shí),f4(x)=|1﹣8x|=8x﹣1,
此時(shí),g(x)=f4(x)﹣x=7x﹣1,有零點(diǎn) .
②當(dāng)x∈( , ]時(shí),f3(x)=|1﹣4x|=4x﹣1,
當(dāng)x∈[ , ]時(shí),f4(x)=|8x﹣3|=3﹣8x,
此時(shí),g(x)=f4(x)﹣x=3﹣9x,有零點(diǎn) .
當(dāng)x∈[ , ]時(shí),f4(x)=|8x﹣3|=8x﹣3,
此時(shí),g(x)=f4(x)﹣x=7x﹣3,有零點(diǎn) ;
(II)當(dāng)x∈( ,+∞)時(shí),f2(x)=|2x﹣1|=2x﹣1,
③當(dāng)x∈( , ]時(shí),f3(x)=|4x﹣3|=3﹣4x,
當(dāng)x∈( , ]時(shí),f4(x)=|5﹣8x|=5﹣8x,
此時(shí),g(x)=f4(x)﹣x=5﹣9x,有零點(diǎn)x5= .
當(dāng)x∈( , ]時(shí),f4(x)=|5﹣8x|=8x﹣5,
此時(shí),g(x)=f4(x)﹣x=7x﹣5,有零點(diǎn)x6= .
④當(dāng)x∈( ,+∞)時(shí),f3(x)=|4x﹣3|=4x﹣3,
當(dāng)x∈( , ]時(shí),f4(x)=|8x﹣7|=7﹣8x,
此時(shí),g(x)=f4(x)﹣x=7﹣9x,有零點(diǎn)x7= .
當(dāng)x∈( ,+∞)時(shí),f4(x)=|8x﹣7|=8x﹣7,
此時(shí),g(x)=f4(x)﹣x=7x﹣7,有零點(diǎn)x8=1.
綜上所述,若函數(shù)g(x)=fm(x)﹣x有8個(gè)零點(diǎn).則m=4.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin(ωx+φ)(ω>0,﹣ ≤φ< ),f(0)=﹣ ,且函數(shù)f(x)圖象上的任意兩條對稱軸之間距離的最小值是 .
(1)求函數(shù)f(x)的解析式;
(2)若f( )= ( <α< ),求cos(α+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每隔30 min從該生產(chǎn)線上隨機(jī)抽取一個(gè)零件,并測量其尺寸(單位:cm).下面是檢驗(yàn)員在一天內(nèi)依次抽取的16個(gè)零件的尺寸:
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計(jì)算得, , , ,其中為抽取的第個(gè)零件的尺寸, .
(1)求 的相關(guān)系數(shù),并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變。ㄈ,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變。
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(ⅰ)從這一天抽檢的結(jié)果看,是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?
(ⅱ)在之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計(jì)這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標(biāo)準(zhǔn)差.(精確到0.01)
附:樣本 的相關(guān)系數(shù), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中P﹣ABCD,底面ABCD為邊長為 的正方形,PA⊥BD.
(1)求證:PB=PD;
(2)若E,F(xiàn)分別為PC,AB的中點(diǎn),EF⊥平面PCD,求直線PB與平面PCD所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于給定的正整數(shù)k,若數(shù)列{an}滿足
=2kan對任意正整數(shù)n(n> k) 總成立,則稱數(shù)列{an} 是“P(k)數(shù)列”.
(1)證明:等差數(shù)列{an}是“P(3)數(shù)列”;
若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線上一點(diǎn), 到直線的距離為, 到的準(zhǔn)線的距離為,且的最小值為.
(Ⅰ)求拋物線的方程;
(Ⅱ)直線交于點(diǎn),直線交于點(diǎn),線段的中點(diǎn)分別為,若,直線的斜率為,求證:直線恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,前n項(xiàng)和為, 是首項(xiàng)為2的等比數(shù)列,且公比大于0, ,, .
(Ⅰ)求和的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在長方體ABCD﹣A1B1C1D1中,AB=5,AD=8,AA1=4,M為B1C1上一點(diǎn)且B1M=2,點(diǎn)N在線段A1D上,A1D⊥AN.
(1)求直線A1D與AM所成角的余弦值;
(2)求直線AD與平面ANM所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中, 為正三角形,平面平面, , , .
(Ⅰ)求證:平面平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)在棱上是否存在點(diǎn),使得平面?若存在,請確定點(diǎn)的位置并證明;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com