【題目】已知是定義在上的偶函數(shù),且滿足,若當(dāng)時,,則函數(shù)在區(qū)間上零點的個數(shù)為 ( )
A. 2018 B. 2019 C. 4036 D. 4037
【答案】D
【解析】分析:先把問題轉(zhuǎn)化為函數(shù)的圖像與函數(shù)y=的圖像的交點的個數(shù),再求函數(shù)f(x)的周期為2,再作出兩個函數(shù)的圖像觀察圖像得到零點個數(shù).
詳解:函數(shù)在區(qū)間上零點的個數(shù)函數(shù)
的圖像與函數(shù)y=的圖像的交點的個數(shù),
因為函數(shù)f(x)是定義在 R上的偶函數(shù),且滿足,
即f(-x)=f(x),又因為f(x+1)=f(1-x),所以f(x)是周期為2的偶函數(shù),
當(dāng)時,,作出函數(shù)f(x)與y=的圖像如下圖,
可知每個周期內(nèi)有兩個交點,所以函數(shù)在區(qū)間上零點的個數(shù)為2018×2+1=4037.
故答案為:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長是2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,A1C的中點.應(yīng)用空間向量方法求解下列問題.
(1)求EF的長
(2)證明:EF∥平面AA1D1D;
(3)證明:EF⊥平面A1CD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的底面是邊長為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長是是的中點.
(1)求證:平面;
(2)求二面角的大;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 =1(a>0,b>0),過其左焦點F作x軸的垂線,交雙曲線于A,B兩點,若雙曲線的右頂點在以AB為直徑的圓外,則雙曲線離心率的取值范圍是( )
A.(1, )
B.(1,2)
C.( ,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)記函數(shù)的導(dǎo)函數(shù),當(dāng)且時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紅鈴蟲是棉花的主要害蟲之一,也侵害木棉、錦葵等植物.為了防治蟲害,從根源上抑制害蟲數(shù)量.現(xiàn)研究紅鈴蟲的產(chǎn)卵數(shù)和溫度的關(guān)系,收集到7組溫度和產(chǎn)卵數(shù)的觀測數(shù)據(jù)于表I中.根據(jù)繪制的散點圖決定從回歸模型①與回歸模型②中選擇一個來進行擬合.
表I
溫度 | 20 | 22 | 25 | 27 | 29 | 31 | 35 |
產(chǎn)卵數(shù)個 | 7 | 11 | 21 | 24 | 65 | 114 | 325 |
(1)請借助表II中的數(shù)據(jù),求出回歸模型①的方程:
表II(注:表中)
189 | 567 | 25.27 | 162 | 78106 | 11.06 | 3040 | 41.86 | 825.09 |
(2)類似的,可以得到回歸模型②的方程為.試求兩種模型下溫度為時的殘差;
(3)若求得回歸模型①的相關(guān)指數(shù),回歸模型②的相關(guān)指數(shù),請結(jié)合②說明哪個模型的擬合效果更好.
參考數(shù)據(jù):
附:回歸方程中相關(guān)指數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間上的函數(shù),
(1)判定函數(shù)在的單調(diào)性,并用定義證明;
(2)設(shè)方程有四個不相等的實根.
①證明:;
②在是否存在實數(shù),使得函數(shù)在區(qū)間單調(diào),且的取值范圍為,若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com