15.已知f(x)=$\left\{{\begin{array}{l}{{2^{x-5x}}^2}&{x≤5}\\{{{log}_4}{x^2}}&{x>5}\end{array}}\right.$,則f(8)的函數(shù)值為( 。
A.-3B.$2\sqrt{2}$C.2D.3

分析 由8>5,得f(8)=$lo{g}_{4}{8}^{2}$=log464,由此能求出結(jié)果.

解答 解:∵f(x)=$\left\{{\begin{array}{l}{{2^{x-5x}}^2}&{x≤5}\\{{{log}_4}{x^2}}&{x>5}\end{array}}\right.$,
∴f(8)=$lo{g}_{4}{8}^{2}$=log464=3.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.給出下列演繹推理:“整數(shù)是有理數(shù),___,所以-3是有理數(shù)”,如果這個(gè)推理是正確的,則其中橫線部分應(yīng)填寫(xiě)-3是整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.A={x|-2<x≤3},B={x|x<-1或x>4},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下面說(shuō)法:
①如果一組數(shù)據(jù)的眾數(shù)是5,那么這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)是5;
②如果一組數(shù)據(jù)的平均數(shù)是0,那么這組數(shù)據(jù)的中位數(shù)為0;
③如果一組數(shù)據(jù)1,2,x,5的中位數(shù)是3,那x=4;
④如果一組數(shù)據(jù)的平均數(shù)是正數(shù),那么這組數(shù)據(jù)都是正數(shù).
其中正確的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知x3<x${\;}^{\frac{1}{3}}$,則x的取值范圍是( 。
A.(-∞,-1)B.(1,+∞)C.(-∞,-1)∪(0,1)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)a為$f(x)=\frac{4}{3}{x^3}+2{x^2}-3x-1$的極值點(diǎn),且函數(shù)g(x)=$\left\{\begin{array}{l}{{a}^{x}(x<0)}\\{lo{g}_{a}x(x≥0)}\end{array}\right.$,則$g(\frac{1}{4})+g({log_2}\frac{1}{5})$=( 。
A.$\frac{9}{20}$B.8C.$\frac{11}{5}$D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$離心率為$\frac{\sqrt{2}}{2}$,右焦點(diǎn)F到直線x=$\frac{{a}^{2}}{c}$的距離為1.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)F的直線l(與x軸不重合)與橢圓C交于A,B兩點(diǎn),線段AB中點(diǎn)為D,過(guò)點(diǎn)O,D的直線交橢圓于M、N兩點(diǎn)(O為坐標(biāo)原點(diǎn)),求四邊形AMBN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知如圖程序框圖(如圖),若輸入a、b分別為10、4,則輸出的a的值為( 。
A.0B.2C.4D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,sinA-cosA=$\frac{17}{13}$,求tanA的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案